Equilibrium potentials and Liouville random measures for Dirichlet forms

Yoichi Oshima joint work with Masatoshi Fukushima

September, 6, 2019

Y. Oshima Equilibrium potentials and Liouville random measures for Dirichle

Introduction

 $(\mathcal{E}, \mathcal{F})$: strongly local Dirichlet form on $L^2(E; m)$, $(E = \mathbb{R}^2)$ $\mathbb{M} = (X_t, \mathbb{P}_x)$: associated diffusion process

$$\begin{split} \mathbb{M} \text{ is transient} &\Rightarrow \mathbb{P}_{\mathbf{x}}(\sigma_B < \infty) = R\mu_B, \ \exists \mu_B(\overline{B}) = \operatorname{Cap}(B) \\ \mu_B: \text{equilibrium measure} \\ ([\text{M.Fukushima, Y.Oshima and M.Takeda; de Gruyter, 2010}]) \\ \mu^B &= \mu_B/\operatorname{Cap}(B): \text{ normalized equilibrium measure} \\ R\mu^B &= \frac{1}{\operatorname{Cap}(B)} = f(B) \text{ q.e. on } \overline{B}: \text{ Robin constant} \end{split}$$

$$M \text{ is the 2-dimensional Brownian motion, } B = B(\mathbf{x}, r) \Rightarrow$$
$$U\nu^{\mathbf{x}, r}(\mathbf{y}) = \frac{1}{\pi} \int \log \frac{1}{|\mathbf{y} - \mathbf{z}|} \nu^{\mathbf{x}, r}(d\mathbf{z}) = \frac{1}{\pi} \log \frac{1}{|\mathbf{x} - \mathbf{y}| \vee r}$$
$$(= \frac{1}{\pi} \log \frac{1}{r} \quad \text{on } B(\mathbf{x}, r))$$

 $\nu^{\mathbf{x},r}$: uniform probability measure on $\partial B(\mathbf{x},r)$: equilibrium measure $\frac{1}{\pi} \log \frac{1}{r}$: Robin constant relative to logarithmic potential ([S.C.Port and C.J.Stone, Academic Press, 1978])

A I > A I > A

Purpose of this talk

 $E = \mathbb{R}^2$ or bounded domain of \mathbb{R}^2 *m*: Lebesgue measure on *E* $(\mathcal{E}, \mathcal{F})$: strongly local Dirichlet form on $L^2(E; m)$ defined by

$$\mathcal{E}(u,v) = \sum_{i,j=1}^{2} \int_{E} a_{ij}(\mathbf{x}) \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} d\mathbf{x} \quad u,v \in \mathcal{F} = H_{0}^{1}(E)$$

 $(a_{ij}(\mathbf{x}))$: uniformly elliptic family of bounded symmetric measurable functions.

 $\mathbb{M} = (X_t, \mathbb{P}_x)$: associated diffusion process

Purpose of this talk:

- To give the equilibrium measures with explicit expression
- Use it to construct the Liouville random measures.

伺 と く ヨ と く ヨ と

Assume that $E = \mathbb{R}^2$

Then the following result holds:

- The transition function $p_t(x, y)$ has (t, x, y)-continuous version satisfying Gaussian estimate.
- The Harnack inequality holds: If $u(\mathbf{x})$ is harmonic on a domain D, then for any disk with $\overline{B} \subset D$, there exists a constant C such that

$$\max\{u(\mathbf{x}):\mathbf{x}\in\overline{B(\mathbf{x}_0,r)}\}\leq C\min\{u(\mathbf{x}):\mathbf{x}\in\overline{B(\mathbf{x}_0,r)}\}$$

Since the resolvent density $r_{\alpha}(\mathbf{x}, \mathbf{y})$ is bounded from below by a positive constant on any compact set, any compact set of positive *m*-measure is an admissible set.

同 ト イヨ ト イヨ ト ヨ うくで

Take $F = \overline{B(S+1)} \setminus B(S)$ as an admissible set and put $g(\mathbf{x}) = 1_F(\mathbf{x})$ \mathbb{M}^g is the diffusion process corresponding to $\mathcal{E}^g(u, v) = \mathcal{E}(u, v) + (u, v)_{L^2(g \cdot m)}$

 R^g be the potential of \mathbb{M}^g :

$$R^g f(\mathbf{x}) = \mathbb{E}_{\mathbf{x}} \left(\int_0^\infty e^{-A_t} f(X_t) dt \right), \quad A_t = \int_0^t g(X_s) ds.$$

 $\exists r^{g}(\mathbf{x}, \mathbf{y}): \ (\mathbf{x}, \mathbf{y})\text{-continuous (on } B(S) \times B(S) \setminus \mathbf{d}) \text{ density of } \\ R^{g}(\mathbf{x}, d\mathbf{y})$

 $\mathcal{S}_0^{g,(0)}$: family of measures with finite 0-order energy integral $\mathcal{M}_0 = \{\mu = \mu_1 - \mu_2 : \mu_i \in \mathcal{S}_0^{g,(0)}, \mu_i(E) < \infty\}.$

 \check{R}_{α} : resolvent of the time changed process of \mathbb{M} by A_t $\check{R}(\mathbf{x}, B) = \sum_{n=1}^{\infty} ((\check{R}_1^n(\mathbf{x}, B) - \widetilde{m}_F(B)), \quad \widetilde{m}_F(B) = m(B \cap F)/m(F)$

ゆ くほ く ほ く ほ く く ゆ

Recurrent potential

Let us define the recurrent potential by

$$R\mu(\mathbf{x}) = H_F \check{R}_F R^g \mu + R^g \mu(\mathbf{x}) - \frac{1}{m(F)} \langle \mu, 1 \rangle, \quad \mu \in \mathcal{M}_0$$

Then it satisfies the modified Poisson equation

$$\mathcal{E}(R\mu, u) = \langle \mu, \widetilde{u} - \langle \widetilde{m}_F, u \rangle \rangle, \quad \forall u \in \mathcal{F}_e.$$

Further $R\mu(\mathbf{x})$ is expressed as

$$R\mu(\mathbf{x}) = \int r(\mathbf{x}, \mathbf{y})\mu(d\mathbf{y}), \quad r(\mathbf{x}, \mathbf{y}) = R^{g}\check{R}_{F}r^{g}(\mathbf{x}, \mathbf{y}) + r^{g}(\mathbf{x}, \mathbf{y}) - \frac{1}{m(F)}$$

It is a bounded linear operator on $L^1(m_F)$ and $L^{\infty}(m_F)$.

Equilibrium measure

- μ^B is the *equilibrium measure* of a Borel set B if μ^B is a probability measure on \overline{B} such that $R\mu^B = c(B)$ on B
- c(B) is called the *Robin's constant*.

They are characterized by

 $c(B) = \min\{\mathcal{E}(R\mu, R\mu) : \mu \text{ is a probability measure on } \overline{B}\}$

 μ^B the unique measure attaining the minimum Explicit expressions of μ^B and c(B):

$$\mu^{B}(A) = \mathbb{P}_{\widetilde{m}_{F}}(X_{\sigma_{B}} \in A), \quad c(B) = \frac{1}{m(F)} \mathbb{E}_{\widetilde{m}_{F}}\left(\int_{0}^{\sigma_{B}} \mathbb{1}_{F}(X_{t}) dt\right).$$

In particular, put $\mu^{\mathbf{x},r} \equiv \mu^{B(\mathbf{x},r)}$, $f(\mathbf{x},r) = c(B(\mathbf{x},r))$.

Then $f(\mathbf{x}, r)$: strictly increases to ∞ as $r \downarrow 0$

化压力 化压力

Brownian motion case

 $\mathbb{M}:$ 2-dimensional Brownian motion, then

$$\mathcal{E}(u,v) = \frac{1}{2} \int \nabla u \cdot \nabla v d\mathbf{x}, \quad u,v \in \mathcal{F} = H_0^1(E),$$

 $\nu^{\mathbf{x},r}$: uniform probability measure on $\partial B(\mathbf{x},r)$ The logarithmic potential of $\nu^{\mathbf{x},r}$ is

$$U\nu^{\mathbf{x},r}(\mathbf{y}) = rac{1}{\pi}\lograc{1}{|\mathbf{x}-\mathbf{y}|\vee r}.$$

Hence $\nu^{\mathbf{x},r}$: equilibrium measure, $f_U(\mathbf{x},r) = \frac{1}{\pi} \log \frac{1}{r}$: Robin constant of $B(\mathbf{x},r)$ relative to U. By modified Poisson equation, $R\nu^{\mathbf{x},r} - U\nu^{\mathbf{x},r} = \text{constant on } B(S)$. Hence $\nu^{\mathbf{x},r}$ becomes the equilibrium measure relative to R, $f(\mathbf{x},r) = f_U(\mathbf{x},r) - 2\langle \widetilde{m}_F, U\nu^{\mathbf{x},r} \rangle + \langle \widetilde{m}_F, U\widetilde{m}_F \rangle$: Robin constant

Gaussian field indexed by \mathcal{F}_e

$$\{X_u : u \in \mathcal{F}_e\}$$
: centered Gaussian field with covariance
 $\mathbb{E}(X_u X_v) = \mathcal{E}(u, v).$

We shall show the existence of Liouville random measure by using the method given by [N. Berestycki, Electro. Commun. Probab. 2017]

$$Y^{\mathbf{x},\varepsilon} = X_{R\mu^{\mathbf{x},\varepsilon}}, \quad \widetilde{Y}^{\mathbf{x},\varepsilon,\gamma} = \gamma Y^{\mathbf{x},r} - \frac{\gamma^2}{2}f(\mathbf{x},\varepsilon).$$

For $\sigma(d\mathbf{x}) = \sigma(\mathbf{x})m(d\mathbf{x})$ with $0 < \sigma(\mathbf{x}) \le \|\sigma\|_{\infty} < \infty$ and Borel set A,

$$\mathrm{I}_{arepsilon}(\omega) = \int_{\mathcal{A}} e^{\widetilde{\mathbf{Y}}^{\mathbf{x},arepsilon,\gamma}} \sigma(d\mathbf{x})$$

For $0 < \alpha, 0 < \varepsilon < \varepsilon_0 < 1/2$ and \overline{r} satisfying $f(\mathbf{x}, \overline{r}) = [f(\mathbf{x}, r)]$,

$$G_{\mathbf{x},\varepsilon}^{lpha,arepsilon_0} = \{ Y^{\mathbf{x},\overline{r}} \leq lpha f(\mathbf{x},\overline{r}), orall r \in (arepsilon,arepsilon_0) \}$$

$$\mathrm{J}_{arepsilon}(\omega) = \int_{\mathcal{A}} e^{\widetilde{\mathbf{Y}}^{\mathbf{x},arepsilon,\gamma}} \mathbb{1}_{\mathcal{G}^{lpha,arepsilon_0}_{\mathbf{x},arepsilon}} \sigma(d\mathbf{x})$$

$L^2(\mathbb{P})$ -convergence of J_{ε}

To prove the existence of the Liouville random measure

$$\overline{\mu}(A,\omega) = \lim_{\varepsilon \to 0} I_{\varepsilon}(\omega)$$
 weakly in probability,

prove the uniform integrability of $I_{\varepsilon}(\omega)$ and $L^{1}(\mathbb{P})$ -convergence.

For this, prove the $L^2(\mathbb{P})$ convergence of $J_{\varepsilon}(\omega)$. To show $\mathbb{E}[(J_{\varepsilon} - J_{\delta})^2] = \mathbb{E}[J_{\varepsilon}^2 - 2J_{\varepsilon}J_{\delta} + J_{\delta}^2] \to 0 \ (\varepsilon, \delta \to 0)$, by the Cameron-Martin formula,

$$\begin{split} \mathbb{E}[\mathbf{J}_{\varepsilon}\mathbf{J}_{\delta}] &= \int_{A} \int_{A} \mathbb{E}\left[\exp\left(\gamma(\mathbf{Y}^{\mathbf{x},\varepsilon} + \mathbf{Y}^{\mathbf{y},\delta} - \frac{\gamma^{2}}{2}(f(\mathbf{x},\varepsilon) + f(\mathbf{y},\delta)\right) \\ & 1_{G_{\mathbf{x},\varepsilon}^{\alpha,\varepsilon_{0}}} \mathbf{1}_{G_{\mathbf{x},\varepsilon}^{\alpha,\varepsilon_{0}}}\right] \sigma(d\mathbf{x}) \sigma(d\mathbf{y}) \\ &= \int_{A} \int_{A} e^{\gamma^{2} \operatorname{Cov}(\mathbf{Y}^{\mathbf{x},\varepsilon},\mathbf{Y}^{\mathbf{y},\delta})} \mathbb{P}(\widetilde{G}_{\mathbf{x},\varepsilon}^{\alpha,\varepsilon_{0}} \cap \widetilde{G}_{\mathbf{y},\delta}^{\alpha,\varepsilon_{0}}) \sigma(d\mathbf{x}) \sigma(d\mathbf{y}). \end{split}$$

$$\widetilde{G}_{\mathbf{x},\varepsilon}^{\alpha,\varepsilon_{0}} = \{Y^{\mathbf{x},\overline{r}} \leq \alpha f(\mathbf{x},\overline{r}) - \gamma \operatorname{Cov}(Y^{\mathbf{x},\varepsilon} + Y^{\mathbf{y},\delta}, Y^{\mathbf{x},\overline{r}}), \forall \mathbf{r} \in \{\varepsilon,\varepsilon_{0}\}\}.$$

Used properties

To estimate it, we use the relation

$$\operatorname{Cov}(\boldsymbol{Y}^{\mathbf{x},\varepsilon},\boldsymbol{Y}^{\mathbf{y},\delta}) \leq \kappa f(\mathbf{y},(|\mathbf{x}-\mathbf{y}|-(\varepsilon+\delta))\vee\delta) + C$$
(1)

for some constants $\kappa \geq 1$ and $C \geq 0$.

In the case of Brownian motion, $f_B(\mathbf{x}, r) = U\nu^{\mathbf{x}, r} + \ell(S) = \frac{1}{\pi} \log \frac{1}{r} + \ell(S):$ Robin constant w.r.t. Brownian motion $\langle \mu^{\mathbf{x}, \varepsilon}, U\mu^{\mathbf{y}, \delta} \rangle = \int \frac{1}{\pi} \log \frac{1}{|\mathbf{y} - \mathbf{z}| \vee \delta} \mu^{\mathbf{x}, \varepsilon} + \text{bounded function.}$ Hence (1) holds with $\kappa = 1$.

The Robin constant $f(\mathbf{x}, r)$ of uniformly elliptic form is estimated by $f_B(\mathbf{x}, r)$ as

$$\frac{1}{2\Lambda}\left(\frac{1}{\pi}\log\frac{1}{r}+\ell(S)\right)\leq f(\mathbf{x},r)\leq \frac{1}{2\lambda}\left(\frac{1}{\pi}\log\frac{1}{r}+\ell(S)\right)$$

► < ∃ ► < ∃ ► < ∃ < <</p>

Liouville random measure: Recurrent case

$$\mu_{\varepsilon}(A) = \int_{A} \exp\left(\gamma Y^{\mathbf{x},\varepsilon} - \frac{\gamma^{2}}{2} f(\mathbf{x},\varepsilon)\right) \sigma(d\mathbf{x})$$

 $ho(\mu, \nu)$: a metric inducing the weak convergence of measures on B(S-1).

Theorem

If
$$0 < \gamma < 2 \sqrt{rac{2\pi\lambda\Lambda}{(2\kappa\Lambda-\lambda)}}$$

then there exists a finite measure $\overline{\mu}(\cdot,\omega)$ such that, for any $\delta > 0$,

$$\lim_{\varepsilon\to 0} \mathbb{P}(\rho(\mu_{\varepsilon},\overline{\mu}) > \delta) = 0.$$

If $(a_{ij}) \subset C^2(E)$, then we can take as $\kappa = \Lambda/\lambda$. Then the condition of the theorem holds if $\gamma \in (0, 2\sqrt{2\pi\lambda^2\Lambda/(2\Lambda^2 - \lambda^2)})$. In particular, for the Brownian motion, this condition becomes $\lambda \in (0, 2\sqrt{\pi})$.

Transient case

For D = B(S), let \mathbb{M}^D be the part of \mathbb{M} on D $\mathbb{P}^D_{\mathbf{x}}(\sigma_B < \infty) = R^D \mu_{B(\mathbf{x},r)}$: $\mu_{B(\mathbf{x},r)}$: equilibrium measure, $\mu^{D,\mathbf{x},r}(A) = \mu_{B(\mathbf{x},r)}(A)/\operatorname{Cap}(B(\mathbf{x},r))$: normalized equilibrium measure.

$$R^D \mu^{D,\mathbf{x},r}(\mathbf{x}) = f^D(\mathbf{x},r) = \frac{1}{\operatorname{Cap}(B(\mathbf{x},r))}$$
 : Robin constant q.e. on $B(\mathbf{x},r)$

Relation between $R\mu$ and $R^D\mu$: If supp $[\mu] \subset D$

$$R\mu - H_{E\setminus D}R\mu = R^D\mu.$$

In particular,

$$f(\mathbf{x}, r) - \langle \mu_D^{\mathbf{x}, r}, H_{E \setminus D} R \mu^{\mathbf{x}, r} \rangle = f_D(\mathbf{x}, r)$$

Further, if $u \in \mathcal{F}^D$ is \mathbb{M}^D -harmonic on $B(\mathbf{x}, r) \subset D$, then it is \mathbb{M} -harmonic Hence, κ can be taken commonly with the case of E.

★ ∃ ▶ ★ ∃ ▶ ↓ ∃ • 𝔍 𝔅

As the recurrent case, put $Y^{D,\mathbf{x},\varepsilon} = X_{R^D\mu^{D,\mathbf{x},\varepsilon}}$ and

$$\mu_{\varepsilon}^{D}(A,\omega) = \int_{A} \exp\left(\gamma Y^{D,\mathbf{x},\varepsilon} - \frac{\gamma^{2}}{2} f^{D}(\mathbf{x},\varepsilon)\right) \sigma(d\mathbf{x}).$$

Then, similarly to the recurrent case, we have the following result.

Theorem

For γ satisfying the condition of Theorem 1, there exists a finite measure $\overline{\mu}^{D}(\cdot, \omega)$ such that, for any $\delta > 0$,

$$\lim_{\varepsilon \to 0} \mathbb{P}^D(\rho(\mu_{\varepsilon}^D, \overline{\mu}) > \delta) = 0.$$

Thank You !!

Y. Oshima Equilibrium potentials and Liouville random measures for Dirichle

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

э