A natural extension of Markov processes and applications to singular SDEs

Michael Röckner (Bielefeld University and Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing)

joint work with: Lucian Beznea Iulian Cimpean (Simion Stoilow Institute of Mathematics, Romanian Academy of Sciences)

Reference: Beznea/Cimpean/R.: arXiv:1904.01607

Contents

Singular SDEs on Hilbert spaces

- Known results
- New results

Excursion on right processes

3 A natural extension of a Markov process

Singular SDEs on Hilbert spaces perturbed by a bounded drift B

1. Singular SDEs on Hilbert spaces

Let us recall the situation of [Da Prato/R.: PTRF 2002] and [Da Prato/R./Wang: JFA 2009].

 (H, \langle , \rangle) separable real Hilbert space with norm $|\cdot|$.

Consider the following SDE in H:

$$dX(t) = (AX(t) + F_0(X(t))) dt + \sigma dW(t),$$

$$X(0) = x \in H,$$
(SDE)

where W(t), $t \ge 0$, is a cylindrical (\mathcal{F}_t) -Wiener process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with normal filtration (\mathcal{F}_t) .

Hypothesis 1

(i) A: $D(A) \subset H \longrightarrow H$ is a self-adjoint linear operator which generates a C_0 -semigroup $T_t = e^{tA}$ on H, and there exists $\omega \in \mathbb{R}$ such that

$$\langle Ax, x \rangle \leq \omega |x|^2$$
 for all $x \in D(A)$.

(ii) σ is symmetric and positive definite such that $\sigma^{-1} \in L(H)$ and for some $\alpha > 0$

$$\int_0^\infty (1+t^{-\alpha}) |\mathcal{T}_t|_{HS}^2 \mathrm{d} t < \infty,$$

where $|\cdot|_{HS}$ denotes the Hilbert–Schmidt norm.

(iii) F_0 is a (possibly) nonlinear mapping given by

$$F_0(x) := \underset{y \in F(x)}{\arg\min} |y|, \quad x \in D(F),$$

where $F: D(F) \subset H \longrightarrow 2^{H}$ is an m-dissipative mapping, i.e.

$$\langle u-v, x-y \rangle \leq 0 \quad \forall x, y \in D(F), \ u \in F(x), \ v \in F(y)$$

and Range $(I-F) := \bigcup_{x \in D(F)} (x - F(x)) = H.$

The Kolmogorov operator associated to (SDE) is

$$L_0\varphi(x) = \frac{1}{2}\operatorname{Tr}[\sigma^2 D^2 \varphi(x)] + \langle x, AD\varphi(x) \rangle + \langle F_0(x), D\varphi(x) \rangle, \quad x \in D(F), \, \varphi \in \mathcal{E}_A(H),$$

where $\mathcal{E}_A(H)$ is the linear space generated by the (real parts of) functions of type $\varphi(x) = \exp\{i\langle x, h \rangle\}, x \in H$, with $h \in D(A)$.

Hypothesis 2

There exists a Borel probability measure ν on H such that

(i)
$$\int_{D(F)} (1+|x|^4)(1+|F_0(x)|^2)\nu(\mathrm{d}x) < \infty.$$

(ii)
$$\int_H L_0 \varphi \mathrm{d}\nu = 0 \quad \text{for all } \varphi \in \mathcal{E}_A(H).$$

(iii)
$$\nu(D(F)) = 1.$$

Example

- (i) $H = L^2(0, 1)$, A = Dirichlet Laplacian on (0, 1), $F_0(x) := -p(x)$, $x \in D(F_0) := L^{2m}(0, 1)$, where p is an increasing polynomial of order m.
- (ii) Further examples in [Da Prato/R.: PTRF 2002], [Da Prato/R./Wang: JFA 2009].
- **Notation:** $H_0 := \operatorname{supp}(\nu)$, $Lip_b(H_0) := \operatorname{all real-valued bdd}$. Lipschitz-functions on H_0 , $\mathbb{B}_b(H_0) := \operatorname{all real-valued bdd}$. Borel-measurable functions on H_0 .

Known results

1.1 Known results

Theorem 0

The following assertions hold.

- (i) (cf. [Da Prato/R.: PTRF 2002]) ($L_0, \mathcal{E}_A(H)$) is closable on $L^2(\nu) := L^2(H, \nu)$, its closure denoted by (L, D(L)) is m-dissipative and:
 - (i.1) there exists a Lipschitz strong Feller Markovian semigroup of kernels on H_0 denoted by $(P_t)_{t\geq 0}$ such that $\lim_{t\to 0} P_t f = f$ pointwise on H_0 for all $f \in Lip_b(H_0)$; by (Lipschitz) strong Feller we mean $P_t(\mathcal{B}_b(H_0)) \subset C_b(H_0)$ (resp. $Lip_b(H_0)$).
 - (i.2) ν is invariant for $(P_t)_{t\geq 0}$ and the extension of $(P_t)_{t\geq 0}$ to $L^2(\nu)$ is the strongly continuous semigroup generated by L.
- (ii) (cf. [Da Prato/R./Wang: JFA 2009]) ν satisfying Hypothesis 2 is unique, $P_t(L^q(H,\nu)) \subset C(H_0)$, and the following Harnack inequality holds

$$(P_t f(x))^q \leq P_t f^q(y) e^{|\sigma^{-1}|^2 \frac{p\omega |x-y|^2}{(q-1)(1-e^{-2\omega t})}}$$

for all $f \geq 0$, t > 0, $q \in (1, \infty)$, $x, y \in H_0$. In particular, $P_t(dx) \ll \nu$, t > 0.

Theorem 0 (continued)

(iii) There exists $M \in \mathcal{B}(H_0)$ such that for each $x \in M$ there exists a pathwise unique continuous strong solution X(t, x), $t \ge 0$, (in the mild sense) for (SDE) starting from $x \in M$ such that

$$\mathbb{P}(X(t,x) \in M \ \forall t \ge 0) = 1$$

and
$$\mathbb{E}[f(X(t,x))] = P_t f(x), \ x \in M, \ f \in \mathcal{B}_b(H_0).$$

1.2 New results

Theorem I ([Beznea/Cimpean/R.: arXiv 2019])

The following assertions hold:

- (i) Let M be as in Theorem 0. For every $x \in H_0 \setminus M$ there exists a generalized solution X(t,x), $t \ge 0$ starting from x (in the sense of [Da Prato/Zabczyk 2014]).
- (ii) There exists a conservative right (strong) Markov process $X = (\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, (X(t))_{t \ge 0}, (\theta(t))_{t \ge 0}, (\mathbb{P}^{\times})_{x \in H_0}) \text{ on } H_0 \text{ (see definition below)}$ with a.s. $|\cdot|$ -continuous paths and transition semigroup $(P_t)_{t \ge 0}$. In particular

$$\mathbb{P}^{x} \circ X(\cdot)^{-1} = \mathbb{P} \circ X(\cdot, x)^{-1}$$
 for all $x \in H_{0}$.

In addition, the following assertions hold:

- (ii.1) For all $x \in H_0$ we have $\mathbb{P}^x(X(t) \in M$ for all t > 0) = 1 (" $H_0 \setminus M$ is polar"), where M is the set from (i).
- (ii.2) For every $x \in H_0$, \mathbb{P}_x solves the martingale problem for L with test function space

$$D_0 := \{ \varphi \in D(L) \cap C_b(H) | \ L\varphi \in L^\infty(H,\nu) \}$$

and initial condition x, i.e. \mathbb{P}_x -a.s. X(0) = x and

$$\varphi(X(t)) - \varphi(X(0)) - \int_0^t L\varphi(X(s)) \mathrm{d}s, \quad t \ge 0,$$

is a continuous (\mathcal{F}_t) -martingale for all $\varphi \in D_0$.

M. Röckner (Bielefeld)

A natural extension of Markov processes and applications to singular SDEs

Theorem I (continued)

- (ii.3) If $x \in H_0 \setminus M$ and $\varepsilon > 0$, then under \mathbb{P}^x it holds that $(X(t + \varepsilon))_{t \ge 0}$ is a probabilistically weak solution to (SDE) (in the mild sense) starting from $X(\varepsilon)$.
- (iii) If $x \in H_0 \setminus M$ and $\varepsilon > 0$ is fixed, then (SDE) has a pathwise unique continuous strong solution with initial distribution $\mathbb{P}^{\times} \circ X(\varepsilon)^{-1}$.

Remark

Obviously, since X is a Markov process with transition semigroup $(P_t)_{t\geq 0}$, the laws $\mathbb{P}^{\times} \circ X(\cdot)^{-1}$, $x \in H_0$, are uniquely determined by these two properties. So, indeed we have $\mathbb{P}^{\times} \circ X(\cdot)^{-1} = \mathbb{P} \circ X(\cdot, x)^{-1}$, if $x \in H_0$.

Remark

(i) In fact, result (ii.2) was also claimed in [Da Prato/R.: PTRF 2002]. However, there was a mistake in the proof that

$$\mathbb{P}^{x}ig(C([0,\infty);H_{0})ig)=1 \quad \textit{for all } x\in H_{0}$$

and only

$$\mathbb{P}^{x}ig({\it C}((0,\infty);{\it H}_{0})ig) = 1 \quad {\it for all } x\in {\it H}_{0}$$

was correctly proved (see [Da Prato/R.: PTRF 2009]). So, by Theorem I above, all claims in [Da Prato/R.: PTRF 2002] are finally proved.

 (ii) The proof of Theorem I is an application of a general extension result for Markov processes which will be presented in the next section.

2. Excursion on right processes

(E, B) = Lusin measurable space (i.e. measurable isomorphic to a Borel subset of a compact metric space).

Recall: Topology τ on E is called Lusin if (E, τ) homeomorphic to a Borel subset of a polish space.

Let $X = (\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, (X(t))_{t \ge 0}, (\theta(t))_{t \ge 0}, (\mathbb{P}^x)_{x \in E})$ be a normal Markov process with state space E and shift operators $\theta \colon \Omega \longrightarrow \Omega$, $t \ge 0$. Its corresponding resolvent $\mathcal{U} = (U_{\alpha})_{\alpha > 0}$ is defined by

$$U_{\alpha}f(x) = \mathbb{E}^{x}\Big[\int_{0}^{\infty} e^{-lpha t}f(X(t))\,\mathrm{d}t\Big], \quad x\in E.$$

For $\beta > 0$ set $\mathcal{U}_{\beta} := (U_{\alpha+\beta})_{\alpha>0}$.

Definition 1

A \mathcal{B} -measurable function $v \colon E \longrightarrow \mathbb{R}_+$ is called **excessive** (w.r.t. \mathcal{U}) if $\alpha U_{\alpha} v \leq v$ for all $\alpha > 0$ and $\sup_{\alpha} \alpha U_{\alpha} v = v$ pointwise; by $\mathcal{E}(\mathcal{U})$ we denote the convex cone of all excessive functions w.r.t. \mathcal{U} .

Definition 2

- (i) The fine topology on E (associated with U) is the coarsest topology on E such that every U_β-excessive function is continuous for some (hence all) β > 0.
- (ii) A topology τ on E is called **natural** if it is a Lusin topology which is coarser than the fine topology, and whose Borel σ -algebra is \mathcal{B} .

Remark

The necessity of considering natural topologies comes from the fact that, in general, the fine topology is neither metrizable, nor countably generated.

To each probability measure μ on (E, \mathcal{B}) we associate the probability $\mathbb{P}^{\mu}(A) := \int \mathbb{P}^{x}(A)\mu(\mathrm{d}x)$ for all $A \in \mathcal{F}$, and we consider the following enlarged filtration

$$\widetilde{\mathcal{F}}_t := \bigcap_{\mu} \mathcal{F}_t^{\mu}, \ \widetilde{\mathcal{F}} := \bigcap_{\mu} \mathcal{F}^{\mu},$$

where \mathcal{F}^{μ} is the completion of \mathcal{F} under \mathbb{P}^{μ} , and \mathcal{F}^{μ}_{t} is the completion of \mathcal{F}_{t} in \mathcal{F}^{μ} w.r.t. \mathbb{P}^{μ} .

Definition 3

The Markov process X is called a right (Markov) process if the following additional hypotheses are satisfied:

- (i) The filtration $(\mathcal{F}_t)_{t\geq 0}$ is right continuous and $\mathcal{F}_t = \widetilde{\mathcal{F}}_t$, $t \geq 0$.
- (ii) For one (hence all) $\beta > 0$ and for each $f \in \mathcal{E}(\mathcal{U}_{\beta})$ the process f(X) has right continuous paths \mathbb{P}^{x} -a.s. for all $x \in E$.
- (iii) There exists a natural topology on E with respect to which the paths of X are \mathbb{P}^{x} -a.s. right continuous for all $x \in E$.

Fact: If X is a right process, then it has a.s. right continuous paths w.r.t. any natural topology on E.

3. A natural extension of a Markov process

(E, B) = Lusin measurable space.

Let $M \in \mathcal{B}$ and $X = (\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, (X(t))_{t \ge 0}, (\theta(t))_{t \ge 0}, (\mathbb{P}^x)_{x \in E})$ a right Markov process with state space M with resolvent $\mathcal{U} = (U_\alpha)_{\alpha > 0}$.

Definition 4

We say that a Markov process $\overline{X} = (\overline{\Omega}, \overline{\mathcal{F}}, \overline{\mathcal{F}}_t, \overline{X}(t), \overline{\theta}(t), \overline{\mathbb{P}}^*)$, with state space E, is a **natural extension** of X if the following conditions are fulfilled.

- (i) \overline{X} is a right process.
- (ii) The processes $((X(t))_{t\geq 0}, \mathbb{P}^{\times})$ and $((\overline{X}(t))_{t\geq 0}, \overline{\mathbb{P}^{\times}})$ are equal in distribution for all $x \in M$;
- (iii) For every $x \in E$ one has $\overline{\mathbb{P}^x}$ -a.s. $\overline{X}(t) \in M$ for all t > 0, i.e. $E \setminus M$ is polar w.r.t. \overline{X} .

Definition 5

A sub-Markovian resolvent of kernels $\overline{\mathcal{U}} := (\overline{U}_{\alpha})_{\alpha>0}$ on E (i.e. each \overline{U}_{α} is a kernel on (E, \mathcal{B}) such that for all $\alpha, \beta > 0$: $\overline{U}_{\alpha} - \overline{U}_{\beta} = (\alpha - \beta)\overline{U}_{\alpha}\overline{U}_{\beta}$, $\alpha\overline{U}_{\alpha}1 \le 1$) is called an extension of \mathcal{U} if:

(i)
$$\overline{U}_{\alpha}(1_{E\setminus M})=0$$

(ii)
$$(\overline{U}_{\alpha}f)|_{M} = U_{\alpha}(f|_{M})$$
 (on M) for all $\alpha > 0$ and $f \in \mathcal{B}_{b}$.

Easy fact: If \overline{X} is a natural extension of X, then its resolvent denoted by $\overline{\mathcal{U}}$ is an extension of \mathcal{U} .

Question: When does the converse hold?

Consider the following condition:

(H) There exists a min-stable convex cone $C \subset B_b^+$ (= all nonnegative bounded B-measurable functions) such that

- (i) $1 \in C$ and $\sigma(C) = B$.
- (ii) For some (hence all) $\alpha > 0$ we have $\overline{U}_{\alpha} f \in \mathcal{C}$ for all $f \in \mathcal{C}$.
- (iii) $\lim_{\alpha \to \infty} \alpha \overline{U}_{\alpha} f = f$ point-wise on E for all $f \in C$.

Then:

Theorem II ([Beznea/Cimpean/R.: arXiv 2019])

- (i) Let $\overline{\mathcal{U}}$ be an extension of \mathcal{U} . Then there exists a natural extension \overline{X} of X, with resolvent $\overline{\mathcal{U}}$, if and only if (H) is satisfied.
- (ii) Any extension $\overline{\mathcal{U}}$ of \mathcal{U} which satisfies (H), is uniquely determined. In particular, any natural extension of X is unique in distribution.

Corollary

Theorem I (ii) holds.

Proof.

(H) holds with $C = Lip_b(H_0)$.

4. Singular SDEs on Hilbert spaces perturbed by a bounded drift B

Let $B: H \longrightarrow H$ be Borel measurable and bounded. Consider following SDE in H:

$$dX(t) = (AX(t)) + F_0(X(t))) dt + B(X(t)) dt + \sigma dW(t)$$
(SDE_B)
$$X(0) = x \in H$$

The corresponding Kolmogorov operator is

$$L^{B}\varphi(x) = \frac{1}{2}\operatorname{Tr}\left[\sigma^{2}D^{2}\varphi(x)\right] + \langle x, AD\varphi(x)\rangle + \langle F_{0}(x), D\varphi(x)\rangle + \langle B(x), D\varphi(x)\rangle, \qquad x \in D(F), \, \varphi \in \mathcal{E}_{A}(H).$$

Let us fix a cylindrical (\mathcal{F}_t) -Wiener process \widetilde{W} on a stochastic basis $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, (\widetilde{\mathcal{F}}_t), \widetilde{\mathbb{P}})$ with normal filtration $(\widetilde{\mathcal{F}}_t)$, and take $(X(t, x))_{t\geq 0}$ to be the **generalized solution** given by Theorem I (i). For each t > 0, we define the Markov kernels

$$Q_t f(x) := \mathbb{E}^{\widetilde{\mathbb{P}}} \{ f(X(t,x))
ho_t^x \}$$

for all $f \in \mathcal{B}_b(H_0)$ and $x \in H_0$, where

$$\rho_t^{\mathsf{x}} := \mathbf{e}^{\int_0^t \langle B(X(s,\mathsf{x})), d\widetilde{W}(s) \rangle - \frac{1}{2} \int_0^t |B|^2 (X(s,\mathsf{x})) ds}$$

are continuous $(\tilde{\mathcal{F}}_t)$ -martingales by Novikov's condition.

Let $\mathcal{V} := (V_{\alpha})_{\alpha>0}$ denote the resolvent of kernels associated to $(Q_t)_{t\geq 0}$, i.e. for $\alpha > 0$ and $f \in \mathcal{B}_b(\mathcal{H}_0)$

$$V_{\alpha}f(x):=\int_{0}^{\infty}e^{-lpha t}Q_{t}f(x)dt, \quad x\in H_{0}.$$

Theorem III ([Beznea/Cimpean/R.: arXiv 2019])

There exists a conservative right Markov process $Y = (\Omega, \mathcal{G}, (\mathcal{G}_t)_{t \ge 0}, (Y(t))_{t \ge 0}, (\theta(t))_{t \ge 0}, (\mathbb{Q}^x)_{x \in H_0})$ on H_0 with a.s. $|\cdot|$ -continuous paths, transition function $(Q_t)_{t \ge 0}$, and Lipschitz strong Feller resolvent \mathcal{V} . In addition, the following assertions hold:

- (i) (Q_t)_{t≥0} extends to a strongly continuous semigroup on L²(ν), whose infinitesimal generator (L^B, D(L^B)) is the closure of (L^B₀, E_A(H)) on L²(ν); in particular, D(L^B) = D(L).
- (ii) For every x ∈ H₀, Q_x solves the martingale problem for L^B with the same test function space as in Theorem I and initial condition x, i.e. Y(0) = x Q_x-a.s. and under Q_x

$$\varphi(Y(t)) - \varphi(Y(0)) - \int_0^t L^B \varphi(Y(s)) ds, \ t \ge 0,$$

is a continuous (\mathcal{F}_t) -martingale for all $\varphi \in D_0$.

- (iii) If $x \in M$, then under \mathbb{Q}^x , the Markov process Y is a (unique in law) probabilistically weak solution to (SDE_B) (in the mild sense), which remains in M.
- (iv) If $x \in H_0 \setminus M$ and $\varepsilon > 0$, then under \mathbb{Q}^x we have that $(Y(t + \varepsilon))_{t \ge 0}$ is a probabilistically weak solution to (SDE_B) (in the mild sense) starting from $Y(\varepsilon)$.

Remark

Feller properties of $\mathcal{V} = (V_{\alpha})_{\alpha>0}$ are hard to obtain from its definition since B is not continuous. They are proved here by an analytic perturbation argument coming from the special form of the Kolmogorov operator L^{B} (generalizing the one in [Da Prato/ Flandoli/R./Veretennikov: AOP 2016]).