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1. Singular SDEs on Hilbert spaces

Let us recall the situation of [Da Prato/R.: PTRF 2002] and [Da Prato/R./Wang: JFA
2009].

(H,(, )) separable real Hilbert space with norm | - |.

Consider the following SDE in H:

dX(t) = (AX(t) + Fo(X(t))) dt + o dW(t), (SDE)
X(0) =x € H,

where W(t), t >0, is a cylindrical (F;)-Wiener process on a probability space (2, F,P)
with normal filtration (F3).
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Singular SDEs on Hilbert spaces

Hypothesis 1

(i) A: D(A) C H — H is a self-adjoint linear operator which generates a Co-semigroup
T. = e on H, and there exists w € R such that

(Ax,x) < wl|x|> for all x € D(A).
(i) o is symmetric and positive definite such that o' € L(H) and for some a > 0
/ (14 t™%)| Te|hsdt < oo,
0
where | - |us denotes the Hilbert—Schmidt norm.
(i) Fo is a (possibly) nonlinear mapping given by

Fo(x) ;= argmin|y|, x € D(F),

yEF(x)
where F: D(F) C H — 2" is an m-dissipative mapping, i.e.
(u=v,x—y) <0 Vx,y€D(F), u€ F(x), veF(y)

and Range (1 —F) := LDJ(F)(X — F(x)) =H.
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Singular SDEs on Hilbert spaces

The Kolmogorov operator associated to (SDE) is

Lop(x) = %TrlazDzw(X)] + (x; ADp(x)) + (Fo(x), Dp(x)), x € D(F), ¢ € Ea(H),

where Ea(H) is the linear space generated by the (real parts of) functions of type
p(x) =exp{i(x, h)}, x € H, with h € D(A).

Hypothesis 2

There exists a Borel probability measure v on H such that

() [+ O+ RGP < oc.
D(F)

(ii) / Lopdr =0 for all ¢ € Ea(H).
H

(iii) v(D(F)) = 1.
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Singular SDEs on Hilbert spaces

Example
(i) H=L?(0,1), A = Dirichlet Laplacian on (0,1), Fo(x) := —p(x),
x € D(Fo) := L*>™(0,1), where p is an increasing polynomial of order m.
(ii) Further examples in [Da Prato/R.: PTRF 2002], [Da Prato/R./Wang: JFA 2009].

Notation: Ho := supp(v), Lips(Ho) := all real-valued bdd. Lipschitz-functions on Hb,
By(Ho) :=all real-valued bdd. Borel-measurable functions on Hp.
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Singular SDEs on Hilbert spaces Known results

1.1 Known results

Theorem 0
The following assertions hold.

(i) (cf. [Da Prato/R.: PTRF 2002]) (Lo, Ea(H)) is closable on L?(v) := L*(H,v), its
closure denoted by (L, D(L)) is m-dissipative and:

(i.1) there exists a Lipschitz strong Feller Markovian semigroup of kernels on Hy denoted by
(Pt)t>0 such that Iim0 P:f = f pointwise on Hy for all f € Lipp(Ho); by (Lipschitz)
= t—
strong Feller we mean P:(By(Ho)) C Cp(Ho) (resp. Lipp(Ho)).

(i.2) v is invariant for (Pt);>o and the extension of (Pt);>o to L?(v) is the strongly
continuous semigroup generated by L.

(ii) (cf. [Da Prato/R./Wang: JFA 2009]) v satisfying Hypothesis 2 is unique,
P:(LY(H,v)) C C(Ho), and the following Harnack inequality holds

-1p2 pw|x—y|?
(g—1)(1—e—2wF)

(PF(x))7 < Pefi(y)e”

forall f >0,t>0, g€ (1,00), x,y € Ho. In particular, P:(dx) < v, t > 0.
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Singular SDEs on Hilbert spaces Known results

Theorem 0 (continued)

(iii) There exists M € B(Ho) such that for each x € M there exists a pathwise unique
continuous strong solution X(t,x), t > 0, (in the mild sense) for (SDE) starting
from x € M such that

P(X(t,x)eM Vt>0)=1
and E[f(X(t,x))] = P:f(x), x € M, f € Bp(Ho).
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Singular SDEs on Hilbert spaces New results

1.2 New results

Theorem | ([Beznea/Cimpean/R.: arXiv 2019])

The following assertions hold:
(i) Let M be as in Theorem 0. For every x € Hyo \ M there exists a generalized solution
X(t,x), t > 0 starting from x (in the sense of [Da Prato/Zabczyk 2014]).

(i) There exists a conservative right (strong) Markov process

X = (Q, F, (Ft)ez0, (X(t))e0, (0(t)) >0, (P*)xer,) on Ho (see definition below)
with a.s. | - |-continuous paths and transition semigroup (P¢)¢>o. In particular

P o X(:) ' =PoX(-,x)"" forall x € Hy.

In addition, the following assertions hold:

(ii.1) For all x € Hy we have P*(X(t) € M for all t > 0) =1 (“Ho \ M is polar”), where M
is the set from (i).

(ii.2) For every x € Hy, Py solves the martingale problem for L with test function space
Do == {o € D(L) N Co(H)| Lip € L™ (H, )}
and initial condition x, i.e. Px-a.s. X(0) = x and
t
PAX(1) = X)) = [ LoX()ds. €20,

is a continuous (Ft)-martingale for all ¢ € Dy.
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Singular SDEs on Hilbert spaces New results

Theorem | (continued)

(ii.3) If x € Ho \ M and € > 0, then under P* it holds that (X(t+¢€))s>0 is a
probabilistically weak solution to (SDE) (in the mild sense) starting from X(e).

(iii) If x € Ho \ M and € > 0 is fixed, then (SDE) has a pathwise unique continuous
strong solution with initial distribution P* o X ().

Remark

Obviously, since X is a Markov process with transition semigroup (P:):>0, the laws
P* o X(-)7!, x € Ho, are uniquely determined by these two properties. So, indeed we
have P* o X(-)™' =P o X(-,x)7?}, if x € Ho.
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Singular SDEs on Hilbert spaces New results

Remark
(i) In fact, result (ii.2) was also claimed in [Da Prato/R.: PTRF 2002]. However, there
was a mistake in the proof that
P*(C([0,00); Ho)) =1 for all x € Hy
and only
P*(C((0,00); Ho)) =1 for all x € Hy
was correctly proved (see [Da Prato/R.: PTRF 2009]). So, by Theorem | above, all
claims in [Da Prato/R.: PTRF 2002] are finally proved.

(ii) The proof of Theorem | is an application of a general extension result for Markov
processes which will be presented in the next section.
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Excursion on right processes

2. Excursion on right processes

(E, B) = Lusin measurable space (i.e. measurable isomorphic to a Borel subset of a
compact metric space).

Recall: Topology T on E is called Lusin if (E,7) homeomorphic to a Borel subset of a
polish space.

Let X = (Q, F, (Fe)e=0, (X(t))e>0, (0(t))e>0, (P*)xce) be a normal Markov process with
state space E and shift operators 0: Q — Q, t > 0. Its corresponding resolvent
U = (Ua)a>o is defined by

Uaf(x) = E* [/Ooo e—‘“f(X(t))dt], x€E.

For 8 > 0 set Up := (Ua+8)a>0-
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Excursion on right processes

Definition 1

A B-measurable function v: E — R, is called excessive (w.r.t. U) if aUyv < v for all
a > 0 and sup, aU,v = v pointwise; by £(U) we denote the convex cone of all excessive

functions w.r.t. U. )

Definition 2

(i) The fine topology on E (associated with U ) is the coarsest topology on E such that
every Ug-excessive function is continuous for some (hence all) 8 > 0.

(ii) A topology T on E is called natural if it is a Lusin topology which is coarser than
the fine topology, and whose Borel o-algebra is B.

Remark

The necessity of considering natural topologies comes from the fact that, in general, the
fine topology is neither metrizable, nor countably generated.

M. Réckner (Bielefeld) A natural extension of Markov processes and applications to singular SDEs 13 /21



Excursion on right processes

To each probability measure p on (E, B) we associate the probability
P*(A) := [P*(A)u(dx) for all A€ F, and we consider the following enlarged filtration

Fe ::ﬂ}}“, ]?::ﬂ}'“,
w w

where F* is the completion of F under P*, and F/ is the completion of F; in F*
w.r.t. P*.

Definition 3

The Markov process X is called a right (Markov) process if the following additional
hypotheses are satisfied:
(i) The filtration (F:)eso is right continuous and F; = Fy, t > 0.
(i) For one (hence all) 8 > 0 and for each f € £(Ug) the process f(X) has right
continuous paths P*-a.s. for all x € E.

(iii) There exists a natural topology on E with respect to which the paths of X are
P*-a.s. right continuous for all x € E.

Fact: If X is a right process, then it has a.s. right continuous paths w.r.t. any natural
topology on E.
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A natural extension of a Markov process

3. A natural extension of a Markov process

(E, B) = Lusin measurable space.
Let M € B and X = (2, F, (Ft)ez0, (X(t))e=0, (0(t))e>0, (P*)xee) a right Markov
process with state space M with resolvent U = (Uqa)a>o0-

Definition 4

We say that a Markov process X = (Q, F, Fr, X(t),0(t),P"), with state space E, is a
natural extension of X if the following conditions are fulfilled.

(i) X is a right process.

(i) The processes ((X(t))e>0,P*) and ((X(t))e>0, PX) are equal in distribution for all
x € M;

(iii) For every x € E one has P*-a.s. X(t) € M for all t >0, i.e. E\ M is polar w.r.t. X.

v
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A natural extension of a Markov process

Definition 5

A sub-Markovian resolvent of kernels U := (Ua)a>0 on E (i.e. each Uy is a kernel on
(E, B) such that for all a, 8 > 0: Uy — Ug = (v — B)Ua U, aUq1 < 1) is called an
extension of U if:

(i) Ua(leym) = 0.
(i) (Uaf)|ms = Ua(flm) (on M) for all & > 0 and f € By,

Easy fact: If X is a natural extension of X, then its resolvent denoted by I/ is an
extension of U.

Question: When does the converse hold?
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A natural extension of a Markov process

Consider the following condition:

(H) There exists a min-stable convex cone C C B} (= all nonnegative bounded
B-measurable functions) such that
(i) 1eCando(C)=B.
(ii) For some (hence all) a > 0 we have U.f € C for all f € C.
(iii) Jim_ aUf = f point-wise on E for all f € C.

Then:
Theorem Il ([Beznea/Cimpean/R.: arXiv 2019])

(i) LetU be an extension of U. Then there exists a natural extension X of X, with
resolvent U, if and only if (H) is satisfied.

(i) Any extension U of U which satisfies (H), is uniquely determined. In particular, any
natural extension of X is unique in distribution.

Corollary
Theorem | (ii) holds.

Proof.
(H) holds with C = Lips(Ho). O
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4. Singular SDEs on Hilbert spaces perturbed by a bounded drift B

Let B: H — H be Borel measurable and bounded. Consider following SDE in H:

AX(t) = (AX(t)) + Fo(X(t))) dt +B(X(t)) dt +odW(t) (SDEs)
X(0)=xeH

The corresponding Kolmogorov operator is

LEp(x) = %Tf [0?D?p(x)] + (x, ADp(x)) + (Fo(x), Dy(x))
+(B(x), Dp(x)), x € D(F), ¢ € Ea(H).
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Singular SDEs on Hilbert spaces perturbed by a bounded drift B

Let us fix a cylindrical (F;)-Wiener process W on a stochastic basis (§~2,]-', (]?t),@) with
normal filtration (F:), and take (X(t, x)):>0 to be the generalized solution given by
Theorem | (i). For each t > 0, we define the Markov kernels

Qef(x) = EX{F(X(t, x))pi}
for all f € B,(Ho) and x € Hp, where

= i (BX(s,20).dW(s)) =3 [ |BI*(X(s,))ds

are continuous (.7-'t)-martinga|es by Novikov's condition.
Let V := (Va)a>o0 denote the resolvent of kernels associated to (Q:):>o, i-e. for a > 0
and f € By(Ho)

Vo f(x) = / e QuF(x)dt, x € Ho.
0

M. Réckner (Bielefeld) A natural extension of Markov processes and applications to singular SDEs 19 /21



Singular SDEs on Hilbert spaces perturbed by a bounded drift B

Theorem Il ([Beznea/Cimpean/R.: arXiv 2019])

There exists a conservative right Markov process Y = (Q,G, (Gt)e>0, (Y (t))e>0,
(6(t))t>0, (Q%)xeH,) on Ho with a.s. | - |-continuous paths, transition function (Q;)>o,
and Lipschitz strong Feller resolvent V. In addition, the following assertions hold:

(i)

(i)

(iii)
(iv)

(Q:)t>0 extends to a strongly continuous semigroup on L*(v), whose infinitesimal
generator (LB, D(LP)) is the closure of (L§,Ea(H)) on L*(v); in particular,
D(LB) = D(L).

For every x € Hy, Q. solves the martingale problem for LB with the same test

function space as in Theorem | and initial condition x, i.e. Y(0) = x Qx-a.s. and
under Qy

AY ()~ oY) - [ LB (Y (s))ds, t >0,

is a continuous (F:)-martingale for all ¢ € Dy.

If x € M, then under Q*, the Markov process Y is a (unique in law) probabilistically
weak solution to (SDEg) (in the mild sense), which remains in M.

If x € Hy\ M and € > 0, then under Q* we have that (Y (t + ¢€))¢>0 is a
probabilistically weak solution to (SDEg) (in the mild sense) starting from Y ().
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Singular SDEs on Hilbert spaces perturbed by a bounded drift B

Remark

Feller properties of V = (Va)a>o are hard to obtain from its definition since B is not
continuous. They are proved here by an analytic perturbation argument coming from the
special form of the Kolmogorov operator L® (generalizing the one in [Da Prato/
Flandoli/R./Veretennikov: AOP 2016]).
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