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Motivation: Graph approximation of data sets

Ingredients:
B 7 points {z;}7_, sampled from Q C R¢ according to ;1 € M(Q)
= empirical measure p" = 2 3" | 5,
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Motivation: Graph approximation of data sets

Ingredients:
B 7 points {z;}"; sampled from Q C R¢ according to ;1 € M(Q)
= empirical measure p" = 2 3" | 5,
B a symmetric weight functionn : G — [0,00) with G = Q x Q\ {z =y}
= (u",n) defines a weighted graph
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Goal: Evolution equations on graphs

For p € P(2) and symmetric K € C(2 x Q) define the interaction energy

£p) =1 / [ K@ @)
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Goal: Evolution equations on graphs
For p € P(Q2) and symmetric K € C(Q x Q) define the interaction energy
1
o) =3 [[ K@@
QxQ
Goal: Define (gradient flow) dynamic for energy £ on weighted graph (u,n).

Subgoals:

B Dynamic should be stable under graph limit n — oo such that " —p
(1™, m) becomes a continuous graph/graphon (i, n) = jump process

B Dynamic should be consistent/stable for local limit:
For pu = Leb(R%) and n° (z,y) = 6~ “n(%5¥), the limit § — 0 shall be the
interaction/aggregation equation

Owpe =V - (pe VK * pt) (IE)
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Goal: Evolution equations on graphs
For p € P(Q2) and symmetric K € C(Q x Q) define the interaction energy
1
o) =3 [[ K@@
QxQ
Goal: Define (gradient flow) dynamic for energy £ on weighted graph (u,n).

Subgoals:

B Dynamic should be stable under graph limit n — oo such that " —p
(1™, m) becomes a continuous graph/graphon (i, n) = jump process

B Dynamic should be consistent/stable for local limit:
For pu = Leb(R%) and n° (z,y) = 6~ “n(%5¥), the limit § — 0 shall be the
interaction/aggregation equation

Owpe =V - (pe VK * pt) (IE)
(IE) is Wasserstein gradient flow for £ = find suitable nonlocal metric 7 on (u, n).

= Gradient flow of £ wrt T is nonlocal interaction equation on weighted graph (1., 1)
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Literature on discrete/non-local gradient flows

Recent advances in discrete/nonlocal gradient flows
® [Maas '11]/[Mielke 11]/ [Chow, Huang, Li, Zhou ’12]
Markov chains and chemical reaction networks on finite graphs
B [Gigli, Maas '13] Gromov-Hausdorff convergence to Wasserstein
B [Erbar *14] Jump processes —(—A)*/2 for a € (0, 2).
m [Disser, Liero '14] Passage from Markov chains to Fokker-Planck

m [Erbar, Fathi, Laschos, S. '16] Mean-field limit
from weakly interacting Markov chains to nonlinear Markov chains

B [Trillos "19] Gromov-Hausdorff convergence of random point clouds
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Literature on discrete/non-local gradient flows

Recent advances in discrete/nonlocal gradient flows
® [Maas '11]/[Mielke 11]/ [Chow, Huang, Li, Zhou ’12]
Markov chains and chemical reaction networks on finite graphs
B [Gigli, Maas '13] Gromov-Hausdorff convergence to Wasserstein
B [Erbar *14] Jump processes —(—A)*/2 for a € (0, 2).
m [Disser, Liero '14] Passage from Markov chains to Fokker-Planck

m [Erbar, Fathi, Laschos, S. '16] Mean-field limit
from weakly interacting Markov chains to nonlinear Markov chains

B [Trillos "19] Gromov-Hausdorff convergence of random point clouds
Above works are built around of gradient flows for free energies/(relative) entropies:

F (0= [ o) ogp(a)do+ 5 [ [ Klz)dota) doty)

Goal: Want to consider o = 0.

Problem: The above introduced nonlocal metrics seem to not have a
clear/well-defined limit for o — 0!

Question: What is a suitable metric for gradient structure of interaction energies?

> il |
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Inspiration: The numerical upwind scheme

What is the nonlocal analog of the continuity equation:

Ope +V-je=0 withflux  ji(z) = pe(z)ve(z) 7
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Inspiration: The numerical upwind scheme

What is the nonlocal analog of the continuity equation:
Ope +V-je=0 withflux  ji(z) = pe(z)ve(z) 7

Fluxes j: are defined on edges (z,y) € G and the divergence is nonlocal

Bupe(x) + (T o) (&) = Bupu(x) + / ey =0, (@)
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Inspiration: The numerical upwind scheme

What is the nonlocal analog of the continuity equation:
Ope +V-je=0 withflux  ji(z) = pe(z)ve(z) 7
Fluxes j: are defined on edges (z,y) € G and the divergence is nonlocal
0upu(2) + (V- 30)(@) = dupu(a) + [ Gl n(e,p)dy =0, (d)
Q

Given a nonlocal vectorfield v, : G — R: velocity of a particle going from x to y.

What is the flux j; induced by the vectorfield v, given p;?
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Inspiration: The numerical upwind scheme

What is the nonlocal analog of the continuity equation:
Ope +V-je=0 withflux  ji(z) = pe(z)ve(z) 7
Fluxes j: are defined on edges (z,y) € G and the divergence is nonlocal
Ol@) + (V@) = 0pn(@) + [ lepyn(e)dy=0. (@
Given a nonlocal vectorfield v, : G — R: velocity of a particle going from x to y.
What is the flux j; induced by the vectorfield v, given p;?
Problem: Choice is not canonical and has a lot of influence on the resulting dynamic.

So far a general mean function 6 : R+ x R4+ — R4 multiplies the velocity:
ge(@,y) = 0(pe(), pi(y)) ve(z, y).

Choice is reasonable for diffusive equations, but not suitable for first order ones.
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Inspiration: The numerical upwind scheme

What is the nonlocal analog of the continuity equation:
Ope +V-je=0 withflux  ji(z) = pe(z)ve(z) 7
Fluxes j: are defined on edges (z,y) € G and the divergence is nonlocal
Ol@) + (V@) = 0pn(@) + [ lepyn(e)dy=0. (@
Given a nonlocal vectorfield v, : G — R: velocity of a particle going from x to y.
What is the flux j; induced by the vectorfield v, given p;?
Problem: Choice is not canonical and has a lot of influence on the resulting dynamic.
So far a general mean function 6 : R+ x R4+ — R4 multiplies the velocity:
Je(@,y) = 0(pe(2), pe(y)) ve(w,y).
Choice is reasonable for diffusive equations, but not suitable for first order ones.
Upwind flux: Set (a)+ = max{0,a} and (a)- = max{0, —a} and define
Ji(z,y) = p(x)ve(z,y)+ — p(y)ve(z, y)- (flux)
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Upwind continuity equation and upwind transportation metric (nonrigorous)

If {p:}¢>0 has a density p. < u seek for solutions to

Oepe(x) + /Q(pt(:v)vt(w, y)+ — pe(y)oe(z,y)-)n(z,y)du(y) =0.  CE
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Upwind continuity equation and upwind transportation metric (nonrigorous)

If {p:}¢>0 has a density p. < u seek for solutions to

depi(x) + /Q(pt(w)vt(w, Y)+ — pe()ve(z,y) - )n(z,y)du(y) =0.  CE

Tentative definition of upwind transportation metric via Benamou-Brenier

Ty '/ ] (ouCo)s Fta) + o) Fpe)nte. ) ) () e}

(p,v)ECE(po,p1)
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Upwind continuity equation and upwind transportation metric (nonrigorous)

If {p:}¢>0 has a density p. < u seek for solutions to

Oepe(x) + /Q(pt(:r)vt(w, y)+ — pe(y)oe(z,y)-)n(z,y)du(y) =0.  CE

Tentative definition of upwind transportation metric via Benamou-Brenier

Ty '/ ] (ouCo)s Fta) + o) Fpe)nte. ) ) () e}

(p,v)ECE(po,p1)

Formal nonlocal Otto calculus leads to the nonlocal interaction equation (NLIE):
—V4E = —VK * p, with VV (z,y) = V(y) — V(z) gives

dipt(x) +/Q(pt(wW(K * pe)(z,y)— — pe(y) V(K * pe) (2, y)+)n(w,y) du(y) =0,
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Upwind continuity equation and upwind transportation metric (nonrigorous)

If {p:}¢>0 has a density p. < u seek for solutions to

depi(x) + /Q(pz(:r)vt(w, Y)+ — pe()ve(z,y) - )n(z,y)du(y) =0.  CE

Tentative definition of upwind transportation metric via Benamou-Brenier
1
mt A [ (o) + o)~ Fot)ate. ) dute) autw) a}
(p,v)ECE(po,p1) 0 el

Formal nonlocal Otto calculus leads to the nonlocal interaction equation (NLIE):
—V4E = —VK * p, with VV (z,y) = V(y) — V(z) gives

dipt(x) +/Q(pt(wW(K * pe)(z,y)— — pe(y) V(K * pe) (2, y)+)77(w,y) du(y) =0,

Today:
B Variational framework for (NLIE) based on upwind transportation metric
B Gradient flows in Finslerian setting
B Stability under graph limit ™ — p
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Rigorous definition and setup

Difficulties:

B p might contain atoms, even if 1 is Lebesgue
= measure valued framework
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Rigorous definition and setup

Difficulties:

B p might contain atoms, even if n is Lebesgue
= measure valued framework

B Benamou-Brenier functional is not jointly convex in (p:, v:)
= flux variables
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Rigorous definition and setup

Difficulties:

B p might contain atoms, even if n is Lebesgue
= measure valued framework
B Benamou-Brenier functional is not jointly convex in (p:, v:)
= flux variables
B Q might be non-compact, for instance R¢
= need to ensure tightness/integrability: p € P2(£2), n has certain moments
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Rigorous definition and setup

Difficulties:

B p might contain atoms, even if n is Lebesgue
= measure valued framework

B Benamou-Brenier functional is not jointly convex in (p:, v:)
= flux variables

B Q might be non-compact, for instance R¢
= need to ensure tightness/integrability: p € P2(2), n has certain moments

B 7 might be singular towards diagonal
Motivation: Want for suitable choice (11, 7°) the local limit

/ WV(O:,y)|2n5(:r7y)du(y)dp(ﬂc)

V(@) - V)|

\zﬂ,\ "0’ (2, y) dp(y) dp(e —>/|VV )2 dp(z)

= Expect only uniform integrability of [, [« — y?n° (z, y) du(y)
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Nonlocal continuity equation and action

Nonlocal continuity equation in measure valued flux form

A pair (pt, jt)icjo,r) € CEr provided that (p:, j:) € P(2) x M(G) for all t € [0, T7:

Ot +V -4 =0 in C([0,T) x Q)*

Thatis V - j is adjoint of Vo(z, y) = ©(y) — () defined by

/OT/Qatgot(m) dps(x) dt+/0T //G Vu(z,y) n(z,y) dj(z,y)dt = 0.

|Veo(z,y)| < lleller@)(2 A |z — y|) = well-defined under integrability condition

[ [ ent=shnendile <o

> il
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Nonlocal continuity equation and action

Nonlocal continuity equation in measure valued flux form

A pair (pt, jt)icjo,r) € CEr provided that (p:, j:) € P(2) x M(G) for all t € [0, T7:

Ot +V -4 =0 in C([0,T) x Q)*

Forj € M(G), set |\ = |p® u| + |p® p| + 4] € MT(G) and define

A )= [ (= (i ) = (amp ")) mew

Hereby, the Isc convex, and pos. one-homogeneous function « is defined by

G2 iy >,
a(j,m) =120 ifj=0andr =0, with j+ = max{0, j} .
+oo ifj#0andr =0,
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Finite action leads to upwind flux

Let (p,J) € P(Q2) x M() such that A(u; p, ) < oo, then:
B there exists a measurable nonlocal vectorfield v : G — R such that

dj(z,y) = v(z,y)+n(z,y) dp(z) du(y) — v(z,y)-n(z,y) du(z) de(y) ,

and it holds

Al p, 5) // o, 9+ 2 + o, ) 2) 0z, v) dp(e) du(y) .

B there exists an antisymmetric 7%° € M*®°(G) such that

V.j=V-j%, thatis //%ndj:/ Véndj® Vo e C2(Q),
G G

and an antisymmetric v*° : G — R with

Alp; p,3°°) = 2//G v (z, y)+*ndp(z) duly) < A p, 5).-
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Lower semicontinuity and integrability

Assumption (weight function)

The p-measurable nonnegative symmetric Isc. function n: G — R satisfies:

B for some C), € (0,00)

sug/ﬂ(kv = y\Z V| — y|4) n(z,y) du(y) < Cy .

zE
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Lower semicontinuity and integrability

Assumption (weight function)

The p-measurable nonnegative symmetric Isc. function n: G — R satisfies:
B for some C;, € (0, c0)

sup [ (fo = VI = 1" (o) dufo) <

e

Consequences:
B Lower semicontinuity: if u™—p in M(Q2), p"—pin P(Q), and j"—7 in M(G),
then
liminf A(u"; p", ") = A(p; p, 5)

n——+oo

B Integrability of flux: For p € P2(2) and 5 € M(G) it holds
[ @nia s ata.) il < 2/CATup7)

= well-posedness of CE provided fOT A(p; pr, 3i) dt < oo!
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Properties of the continuity equation

Continuity equation in measure valued flux form

A pair (pt, jt)iejo,r) € CEr provided that (p:, j:) € P2(2) x M(G) forall ¢ € [0, T]:
Ope +V -4 =0 in C.([0,T) x Q)*
Thatis V - j is adjoint of Vo(z, y) = ¢(y) — () defined by

/OT /Q Orpe(x) dpe(z) dt + /OT / Gﬁpt(x,y) n(z,y) dje(z,y) dt = 0.

|Veo(z,y)| < lleller@)(2 A |z — y|) = well-defined under integrability condition
T
[ [ @nie=shute o) syt < +oo
0 G

B Existence of measure valued narrowly continuous solutions

B {00 },en C P2(2) with sup,, oy M2(pg) < +oo and (p™,3") € CEr such that
sup,, fOT A(pt', ji') dt < +oo, then also sup, ¢ (o, 7 Sup, e M2(pi') < +o0.

> il |
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Compactness of solutions to CE

Assumption (weight function)

The pu-measurable nonnegative symmetric Isc. function n: G — R satisfies:

B The measure 7(-, -) du is uniformly integrable close to diagonal, that is

hmsup/ 5 — P ) A = 0, Bull) = [y = D o — ] < =)
Bs(z)

e=0,cq
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Compactness of solutions to CE

Assumption (weight function)

The pu-measurable nonnegative symmetric Isc. function n: G — R satisfies:
B The measure 7(-, -) du is uniformly integrable close to diagonal, that is

hmsup/ 5 — ol e =0, L) = o & Dot |5 — ] < =)
e ()

e=0,cq

Compactness: Let (p™,5") € CEr for each n € N such that

T
sup Ma2(py) < oo and sup/ A(pt', i) dt < +oo.
nelN 0

Then, there exists (p, 7) € CEr such that
pr — pr inP2(Q)forallt € [0,T]
§" =7 in Miee(G x [0,T)).

Moreover, the action is lower semicontinuous

T T
lim inf / A} 30y dt > / Alpe, o) dt
(0] (0]

n——+oo
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Upwind transportation metric

Definition

For po, p1 € P2(2) the nonlocal upwind transportation quasimetric is defined by

T(on,p0? = nt { [ Alprgi)at (5.3) € CBlon. ) |
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Upwind transportation metric

Definition

For po, p1 € P2(2) the nonlocal upwind transportation quasimetric is defined by

T(o0,1)* = inf{/olA(pt,jadt  (.4) € CBlpos 1)}

Properties:

The infimum is attained for (p, 5) € CE(po, p1) with A(pe, ji) = T (po, p1)*>.
Comparison with Wasserstein W1 (p°, p') < 2/Cy, /T (p°, p1).

= topology is stronger than W;.

T is jointly narrowly lower semicontinuous.

T is a quasimetric on P2 (0 ) in particular it is in general non-symmetric!
{Pt}te 0,1] S AC(O, 1, (732 Iff fO \/ pt,]t dt < 0.

For p € 772( ) holds 7 € T, 732( ) iff j7 < p ® p and for the density

vy = d( ® FeEm) it holds that v defined by

— L2 (n p®u)
v(z,y) = vy (z,y) —vy(y,x) satisfies ve {Vo|peCr(Q)} e
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Two-point space

Fix the graph Q = {0, 1} with (0,1) = 7(1,0) = « > 0, u(0) = p € (0,1) and
(1) =g € (0,1) such that p+ ¢ = 1. For all p, v € P(Q) it holds

T(p,v) =

V& (Vo) - o0)) s itwo < po.

08

= 25
06

04

02

00 02 04 06 08 1.0
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Finslerian geometry and gradient flows

By previous representation: Associate to (p:)ic(0,1] € AC(0, 1; (P2(£2), 7)) an
antisymmetric (w¢):c(0,1) such that (p¢, j¢)iejo,1; € CE and

dje(w,y) = we(x,y)+ dp(x) dp(y) — wi(z, y)- du(z) dp(y) -

The geometry induced by 7T is Finslerian:
= inner product in tangent space depends on p and w € T,P2(2)!

Finslerian inner product

For p € P2(R2) and w € T, P2(Q2) define gp,.: TpP2(R2) x T, P2(2) — R by

o) = [ /G w(, 9)v(2 ) 12, 9) %

X (Xqws03 (2, y) dp(z) dp(y) + Xw<oy (@, y) du(z) dp(y)) -

— define gradient flow for interaction energy £ in terms of curves of maximal slope

See also [Ohta-Sturm ’09, '12] and [Agueh '12] for gradient flows in Finslerian setting.
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Finslerian product: two basic properties

gpnlur) = [ /G (i, 9o () 12, 9) %

X (Xqws0y (2, ) dp(z) dp(y) + Xw<oy (@, y) du(z) dp(y)) -
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Finslerian product: two basic properties

gpnlur) = [ /G (i, 9o () 12, 9) %

X (Xqws0y (2, ) dp(z) dp(y) + Xw<oy (@, y) du(z) dp(y)) -

m Chain-rule: For (p;)icpo,1) € AC(0,1; (P2(2), 7)) and ¢ € C(Q)

d - ) -
E/wdpt :/ Vo(z,y)n(z,y) dje(z,y) = gor.w, (i, V) .
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Finslerian product: two basic properties

gpnlur) = [ /G (i, 9o () 12, 9) %

X (Xqwso} (@, ) dp(x) dp(y) + X (w<oy (x,y) du(z) dp(y)) .

® Chain-rule: For (p:):c(0,1) € AC(0, 1; (P2(2), T)) and ¢ € C*()

d
G sodpt=/ Ve, y)n(z,y) dje(@,y) = gpyw, (wi, Vo) .

B One-sided Cauchy-Schwarz: For all v, w € T,P>(2) holds
G (0,0) = / /G oy, v) (w(z, v)+ dp(e) du(y) — w(e,y)- du(z) dp(y)

< / /G o2, y) 1wz, y)17(z y) dp() duy)
4 / /G oz, y)_w(z,y)_n(z,y) du(z) dp(y)

< \/gpyv (v,v) go,w(w, w) .

André Schlichting e Jump processes and the upwind transportation metric @ September 05, 2019 e Page 15 (19) iam



Chain rule and curves of maximal slope

Recall: interaction energy £
E(p) = %/ K(z,y) dp(z) dp(y) -
QxQ
Assumption: The potential K : 2 x Q — R satisfies
(K1) K € C(22 x Q);
(K2) K is symmetric, i.e. K(z,y) = K(y,z), forall (z,y) € Q2 x Q;
(K3) for some L > 1 and for all (z,y), (Z,9) € Q2 x Q

|K(x,y) - K(‘rlay/” <L (|($,y) - (i}ﬂ” \ |(£L‘7y) - (575)‘2) .

local Lipschitz and at most quadratic growth
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Chain rule and curves of maximal slope

Recall: interaction energy £
E(p) = %/ K(z,y) dp(z) dp(y) -
QxQ
Assumption: The potential K : 2 x Q — R satisfies
(K1) K € C(22 x Q);
(K2) K is symmetric, i.e. K(z,y) = K(y,z), forall (z,y) € Q2 x Q;
(K3) for some L > 1 and for all (z,y), (Z,9) € Q2 x Q

|K(m,y) - K(‘rlay/” <L (|($,y) - (i‘7g)| \ |(.’L‘7y) - (i‘7g)‘2) .

local Lipschitz and at most quadratic growth

Chain rule
Let p € AC(0, T (P2(f2),T)), thenVO < s <t < T

E(pe) — £(ps) ///v (%) di- (@, )dfzjstgpw(wﬁ%)df
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Chain rule and curves of maximal slope

Let p € AC(0, T (P2(2),T)), thenV0O < s <t < T

£p) =0 = [ / | V5 @) i@ dr = [ e (w955 )

Curves of maximal slope: For any p € AC(0, T'; (P2(2), T)) holds

1 /7 =0 5& 1 (7
E(pr)—E(po) = *5/0 9y, woEe) (*ng v&p)dtii/o Gpiwy (Wi, we) dt .

with equality iff w, = ~V 2520 = —VK « p,
= Define the nonnegative de Giorgi functional by

Gr(p) = £(or) = £(p0) + 5 [ it 3 [ Alprwar >0,

where )

n(z,y) dp(z) du(y) .
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Variational characterization of solutions

The de Giorgi functional gives a variation characterization of solutions to
dp+V-j=0 inCE(0,T]xQ)", (NLIE)
where the flux j is given by

dj(z,y) = V(Kxp)(z,y)-n(z,y) dp(z) du(y) =V (K*p)(z,y) 1 n(z,y) dp(y) du(z) .

Theorem (Curves of maximal slope characterization)
Let (pt)sejo,r) € AC?(0,T; (P2(Q), T)) be such that fOT D(ps, wt) dt < oo, then

® Gr(p) 20
B Gr(p) = 0iff (pt)icqo,r is @ weak solution to (NLIE).
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Variational characterization of solutions

The de Giorgi functional gives a variation characterization of solutions to
dp+V-j=0 inCE(0,T]xQ)", (NLIE)
where the flux j is given by

dj(z,y) = V(Kxp)(z,y)-n(z,y) dp(z) du(y) =V (Kxp)(z,y)+n(z,y) dp(y) du(z) .

Theorem (Curves of maximal slope characterization)

Let (pt)seqo,r € AC2(0,T; (P2(2), T)) be such that [} D(p, we) dt < oo, then
® Gr(p) >0
B Gr(p) = 0iff (pt)ecio, 1) is a weak solution to (NLIE).

B Minimizers exist by direct method, however not necessarily global!

B Possibility: Redo the minimizing movement scheme in the quasimetric setting
B Instead: Show existence via finite dimensional approximation and stability

B Alternatively: Existence of (strong) solutions via classical fix-point argument
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Stability with respect to graph approximations

Let u™ € M(R) be such that u"—p and define

Gr (™3™ = E(oR) — () + 5 [ AGptap)de+ 5 [ DG g de.
0 0
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Stability with respect to graph approximations
Let u" € M(Q) be such that ™ —p and define

Gr(n";p ):5(pT)—5(po)+§/ A(p ;ptvjt)dt+§/ D(u™;py)dt .
0 0

Stability of gradient flows a la Sandier-Serfaty

Let p™ € AC?(0,T; (P2(RQ), T,»)) such that sup,, Gr(u"; p™) < oo.
Then, there exists p € AC?(0,T’; (P(2), T,.)) such that

pi—pr InP2(Q) forae. t €[0,7)
jn_\j in MIOC(G X [0, TD

T T
timin [ A g7 0 de > [ AGs i)
n 0 0
T T
liminf/ D(u";p?)dtz/ D(; pt) dt .
n 0 0

In particular weak solutions of (NLIE) on graph (u™,n) converge to ones on (i, 7).
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Stability with respect to graph approximations
Let u" € M(Q) be such that ™ —p and define

Gr(n";p ):5(pT)—5(po)+§/ A(p ;ptvjt)dt+§/ D(u™;py)dt .
0 0

Stability of gradient flows a la Sandier-Serfaty

Let p™ € AC?(0,T; (P2(RQ), T,»)) such that sup,, Gr(u"; p™) < oo.
Then, there exists p € AC?(0,T’; (P(2), T,.)) such that

pi—pr InP2(Q) forae. t €[0,7)
jn_\j in MIOC(G X [0, TD

T T
timin [ A g7 0 de > [ AGs i)
n 0 0
T T
liminf/ D(u"™; pt') dt 2/ D(; pt) dt .
n 0 0

In particular weak solutions of (NLIE) on graph (u™,n) converge to ones on (i, 7).

Corollary: Existence of weak solution to (NLIE) via finite-dimensional approximation.
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Open questions / Future work

B convexity vs. contractivity vs. stability
= in Finslerian geometry these become different concepts [Ohta-Sturm ’12]
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Open questions / Future work

B convexity vs. contractivity vs. stability
= in Finslerian geometry these become different concepts [Ohta-Sturm '12]

B local limit § — 0 to obtain interaction equation
B diagonal limits: N — oo and § — 0 to obtain even different PDEs

B minimizing movement schemes (JKO)
= extend classical theory to quasimetric setting and beyond

B Free energies including entropies

F(p) =0 [log ple)dp(e) + 5 [ K(z,y)do(z) dolw)

For o > 0 expect a Scharfetter-Gummel gradient structure with flux

v(z,y) _v(z,y)

- p)e= e —ply)e” "o  +50
57 @) = vl ) 2D TP T 030 e )~ plm)ele,y)- -
e o —e e
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Open questions / Future work

B convexity vs. contractivity vs. stability
= in Finslerian geometry these become different concepts [Ohta-Sturm '12]

B local limit § — 0 to obtain interaction equation
B diagonal limits: N — oo and § — 0 to obtain even different PDEs

B minimizing movement schemes (JKO)
= extend classical theory to quasimetric setting and beyond

B Free energies including entropies

F(p) =0 [log ple)dp(e) + 5 [ K(z,y)do(z) dolw)

For o > 0 expect a Scharfetter-Gummel gradient structure with flux

v(z,y) _v(z,y)

- plx)e = —plyle” "7 om0
J (w,y) = ’U(x>y) ) v(z,y) ( 1,)(2“1/) :) p(a:)v(:c,y)Jr—p(y)v(Ly),
e o —e g

Thank you for your attention!
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