Meanfield jump processes on graphs and the upwind transportation metric

André Schlichting

Institute for Applied Mathematics, University of Bonn

Joint work with Antonio Esposito, Francesco Patacchini and Dejan Slepčev

Japanese-German Open Conference on Stochastic Analysis 2019, Fukuoka

September 05, 2019

Ingredients:

- *n* points $\{x_i\}_{i=1}^n$ sampled from $\Omega \subset \mathbb{R}^d$ according to $\mu \in \mathcal{M}(\Omega)$ ⇒ empirical measure $\mu^n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$
- a symmetric weight function $\eta : G \to [0, \infty)$ with $G = \Omega \times \Omega \setminus \{x = y\}$ $\Rightarrow (u^n, n)$ defines a weighted graph

Ingredients:

n points {x_i}ⁿ_{i=1} sampled from Ω ⊂ ℝ^d according to μ ∈ M(Ω)
 ⇒ empirical measure μⁿ = 1/n ∑ⁿ_{i=1} δ_{x_i}
 a symmetric weight function η : G → [0, ∞) with G = Ω × Ω \ {x = y}
 ⇒ (μⁿ, η) defines a weighted graph

Goal: Evolution equations on graphs

For $\rho \in \mathcal{P}(\Omega)$ and symmetric $K \in C(\Omega \times \Omega)$ define the *interaction energy*

$$\mathcal{E}(\rho) = \frac{1}{2} \iint_{\Omega \times \Omega} K(x, y) \,\mathrm{d}\rho(x) \,\mathrm{d}\rho(y)$$

Goal: Define (gradient flow) dynamic for energy \mathcal{E} on weighted graph (μ, η) .

Subgoals:

Dynamic should be stable under graph limit $n \to \infty$ such that $\mu^n \rightharpoonup \mu$ (μ^n, η) becomes a continuous graph/graphon $(\mu, \eta) \Rightarrow$ jump process

Dynamic should be consistent/stable for local limit: For $\mu = \text{Leb}(\mathbb{R}^d)$ and $\eta^{\delta}(x, y) = \delta^{-d} \eta\left(\frac{x-y}{\delta}\right)$, the limit $\delta \to 0$ shall be the interaction/aggregation equation

$$\partial_t \rho_t = \nabla \cdot \left(\rho_t \nabla K * \rho_t \right) \tag{IE}$$

(IE) is Wasserstein gradient flow for $\mathcal{E} \Rightarrow$ find suitable nonlocal metric \mathcal{T} on (μ, η) .

 \Rightarrow Gradient flow of \mathcal{E} wrt \mathcal{T} is nonlocal interaction equation on weighted graph (μ, η)

Goal: Evolution equations on graphs

For $\rho \in \mathcal{P}(\Omega)$ and symmetric $K \in C(\Omega \times \Omega)$ define the *interaction energy*

$$\mathcal{E}(\rho) = \frac{1}{2} \iint_{\Omega \times \Omega} K(x, y) \,\mathrm{d}\rho(x) \,\mathrm{d}\rho(y)$$

Goal: Define (gradient flow) dynamic for energy \mathcal{E} on weighted graph (μ, η) .

Subgoals:

- Dynamic should be stable under graph limit $n \to \infty$ such that $\mu^n \rightharpoonup \mu$ (μ^n, η) becomes a continuous graph/graphon $(\mu, \eta) \Rightarrow$ jump process
- Dynamic should be consistent/stable for local limit: For $\mu = \text{Leb}(\mathbb{R}^d)$ and $\eta^{\delta}(x, y) = \delta^{-d} \eta\left(\frac{x-y}{\delta}\right)$, the limit $\delta \to 0$ shall be the interaction/aggregation equation

$$\partial_t \rho_t = \nabla \cdot \left(\rho_t \nabla K * \rho_t \right) \tag{IE}$$

(IE) is Wasserstein gradient flow for $\mathcal{E} \Rightarrow$ find suitable nonlocal metric \mathcal{T} on (μ, η) .

 \Rightarrow Gradient flow of \mathcal{E} wrt \mathcal{T} is nonlocal interaction equation on weighted graph (μ, η)

Goal: Evolution equations on graphs

For $\rho \in \mathcal{P}(\Omega)$ and symmetric $K \in C(\Omega \times \Omega)$ define the *interaction energy*

$$\mathcal{E}(\rho) = \frac{1}{2} \iint_{\Omega \times \Omega} K(x, y) \,\mathrm{d}\rho(x) \,\mathrm{d}\rho(y)$$

Goal: Define (gradient flow) dynamic for energy \mathcal{E} on weighted graph (μ, η) .

Subgoals:

- Dynamic should be stable under graph limit $n \to \infty$ such that $\mu^n \rightharpoonup \mu$ (μ^n, η) becomes a continuous graph/graphon $(\mu, \eta) \Rightarrow$ jump process
- Dynamic should be consistent/stable for local limit: For $\mu = \text{Leb}(\mathbb{R}^d)$ and $\eta^{\delta}(x, y) = \delta^{-d} \eta\left(\frac{x-y}{\delta}\right)$, the limit $\delta \to 0$ shall be the interaction/aggregation equation

$$\partial_t \rho_t = \nabla \cdot \left(\rho_t \nabla K * \rho_t \right) \tag{IE}$$

(IE) is Wasserstein gradient flow for $\mathcal{E} \Rightarrow$ find suitable nonlocal metric \mathcal{T} on (μ, η) .

 \Rightarrow Gradient flow of \mathcal{E} wrt \mathcal{T} is nonlocal interaction equation on weighted graph (μ, η)

Literature on discrete/non-local gradient flows

Recent advances in discrete/nonlocal gradient flows

- [Maas '11] / [Mielke '11] / [Chow, Huang, Li, Zhou '12]
 Markov chains and chemical reaction networks on finite graphs
- [Gigli, Maas '13] Gromov-Hausdorff convergence to Wasserstein
- **Erbar '14]** Jump processes $-(-\Delta)^{\alpha/2}$ for $\alpha \in (0,2)$.
- [Disser, Liero '14] Passage from Markov chains to Fokker-Planck
- [Erbar, Fathi, Laschos, S. '16] Mean-field limit from weakly interacting Markov chains to nonlinear Markov chains

[Trillos '19] Gromov-Hausdorff convergence of random point clouds

Above works are built around of gradient flows for free energies/(relative) entropies:

$$\mathcal{F}^{\sigma}(\rho) = \sigma \int \rho(x) \log \rho(x) \, \mathrm{d}x + \frac{1}{2} \iint K(x, y) \, \mathrm{d}\rho(x) \, \mathrm{d}\rho(y)$$

Goal: Want to consider $\sigma = 0$.

Problem: The above introduced nonlocal metrics seem to not have a clear/well-defined limit for $\sigma \rightarrow 0!$

Question: What is a suitable metric for gradient structure of interaction energies?

Recent advances in discrete/nonlocal gradient flows

- [Maas '11] / [Mielke '11] / [Chow, Huang, Li, Zhou '12]
 Markov chains and chemical reaction networks on finite graphs
- [Gigli, Maas '13] Gromov-Hausdorff convergence to Wasserstein
- [Erbar '14] Jump processes $-(-\Delta)^{\alpha/2}$ for $\alpha \in (0,2)$.
- [Disser, Liero '14] Passage from Markov chains to Fokker-Planck
- [Erbar, Fathi, Laschos, S. '16] Mean-field limit from weakly interacting Markov chains to nonlinear Markov chains
- [Trillos '19] Gromov-Hausdorff convergence of random point clouds

Above works are built around of gradient flows for free energies/(relative) entropies:

$$\mathcal{F}^{\sigma}(\rho) = \sigma \int \rho(x) \log \rho(x) \, \mathrm{d}x + \frac{1}{2} \iint K(x, y) \, \mathrm{d}\rho(x) \, \mathrm{d}\rho(y)$$

Goal: Want to consider $\sigma = 0$.

Problem: The above introduced nonlocal metrics seem to not have a clear/well-defined limit for $\sigma \rightarrow 0!$

Question: What is a suitable metric for gradient structure of interaction energies?

 $\partial_t \rho_t + \nabla \cdot j_t = 0$ with flux $j_t(x) = \rho_t(x)v_t(x)$?

Fluxes j_t are defined on edges $(x, y) \in G$ and the divergence is nonlocal

$$\partial_t \rho_t(x) + (\overline{\nabla} \cdot j_t)(x) = \partial_t \rho_t(x) + \int_{\Omega} j_t(x, y) \,\eta(x, y) \,\mathrm{d}y = 0 \;.$$
 (div)

Given a nonlocal vectorfield $v_t : G \to \mathbb{R}$: velocity of a particle going from x to y.

What is the flux j_t induced by the vectorfield v_t given ρ_t ?

Problem: Choice is not canonical and has a lot of influence on the resulting dynamic. So far a *general mean function* $\theta : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ multiplies the velocity:

 $j_t(x,y) = \theta(\rho_t(x), \rho_t(y)) v_t(x,y).$

Choice is reasonable for diffusive equations, but not suitable for first order ones.

Upwind flux: Set $(a)_+ = \max\{0, a\}$ and $(a)_- = \max\{0, -a\}$ and define

$$j_t(x,y) = \rho(x)v_t(x,y)_+ - \rho(y)v_t(x,y)_- .$$
 (flux)

Inspiration: The numerical upwind scheme

What is the nonlocal analog of the continuity equation:

 $\partial_t \rho_t + \nabla \cdot j_t = 0$ with flux $j_t(x) = \rho_t(x)v_t(x)$?

Fluxes j_t are defined on edges $(x, y) \in G$ and the divergence is nonlocal

$$\partial_t \rho_t(x) + (\overline{\nabla} \cdot j_t)(x) = \partial_t \rho_t(x) + \int_{\Omega} j_t(x, y) \,\eta(x, y) \,\mathrm{d}y = 0 \,. \tag{div}$$

Given a nonlocal vectorfield $v_t : G \to \mathbb{R}$: velocity of a particle going from x to y.

What is the flux j_t induced by the vectorfield v_t given ρ_t ?

Problem: Choice is not canonical and has a lot of influence on the resulting dynamic. So far a *general mean function* $\theta : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ multiplies the velocity:

 $j_t(x,y) = \theta(\rho_t(x), \rho_t(y)) v_t(x,y).$

Choice is reasonable for diffusive equations, but not suitable for first order ones.

Upwind flux: Set $(a)_+ = \max\{0, a\}$ and $(a)_- = \max\{0, -a\}$ and define

$$j_t(x,y) = \rho(x)v_t(x,y)_+ - \rho(y)v_t(x,y)_- .$$
 (flux)

 $\partial_t \rho_t + \nabla \cdot j_t = 0$ with flux $j_t(x) = \rho_t(x)v_t(x)$?

Fluxes j_t are defined on edges $(x, y) \in G$ and the divergence is nonlocal

$$\partial_t \rho_t(x) + (\overline{\nabla} \cdot j_t)(x) = \partial_t \rho_t(x) + \int_{\Omega} j_t(x, y) \,\eta(x, y) \,\mathrm{d}y = 0 \;. \tag{div}$$

Given a nonlocal vectorfield $v_t : G \to \mathbb{R}$: velocity of a particle going from x to y. What is the flux j_t induced by the vectorfield v_t given ρ_t ?

Problem: Choice is not canonical and has a lot of influence on the resulting dynamic. So far a *general mean function* θ : $\mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ multiplies the velocity: $i_t(x, y) = \theta(\rho_t(x), \rho_t(y)) v_t(x, y),$

Choice is reasonable for diffusive equations, but not suitable for first order ones.

Upwind flux: Set
$$(a)_+ = \max\{0, a\}$$
 and $(a)_- = \max\{0, -a\}$ and define

$$j_t(x,y) = \rho(x)v_t(x,y)_+ - \rho(y)v_t(x,y)_- .$$
 (flux)

 $\partial_t \rho_t + \nabla \cdot j_t = 0$ with flux $j_t(x) = \rho_t(x)v_t(x)$?

Fluxes j_t are defined on edges $(x, y) \in G$ and the divergence is nonlocal

$$\partial_t \rho_t(x) + (\overline{\nabla} \cdot j_t)(x) = \partial_t \rho_t(x) + \int_{\Omega} j_t(x, y) \,\eta(x, y) \,\mathrm{d}y = 0 \;. \tag{div}$$

Given a nonlocal vectorfield $v_t : G \to \mathbb{R}$: velocity of a particle going from x to y.

What is the flux j_t induced by the vectorfield v_t given ρ_t ?

Problem: Choice is not canonical and has a lot of influence on the resulting dynamic.

So far a *general mean function* $\theta : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ multiplies the velocity:

$$j_t(x,y) = \theta(\rho_t(x), \rho_t(y)) v_t(x,y).$$

Choice is reasonable for diffusive equations, but not suitable for first order ones.

Upwind flux: Set $(a)_+ = \max\{0, a\}$ and $(a)_- = \max\{0, -a\}$ and define $j_t(x, y) = \rho(x)v_t(x, y)_+ - \rho(y)v_t(x, y)_- . \qquad (flux)$

 $\partial_t \rho_t + \nabla \cdot j_t = 0$ with flux $j_t(x) = \rho_t(x)v_t(x)$?

Fluxes j_t are defined on edges $(x, y) \in G$ and the divergence is nonlocal

$$\partial_t \rho_t(x) + (\overline{\nabla} \cdot j_t)(x) = \partial_t \rho_t(x) + \int_{\Omega} j_t(x, y) \,\eta(x, y) \,\mathrm{d}y = 0 \;. \tag{div}$$

Given a nonlocal vectorfield $v_t : G \to \mathbb{R}$: velocity of a particle going from x to y.

What is the flux j_t induced by the vectorfield v_t given ρ_t ?

Problem: Choice is not canonical and has a lot of influence on the resulting dynamic. So far a *general mean function* $\theta : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ multiplies the velocity:

$$j_t(x,y) = \theta(\rho_t(x), \rho_t(y)) v_t(x,y).$$

Choice is reasonable for diffusive equations, but not suitable for first order ones.

Upwind flux: Set $(a)_+ = \max\{0, a\}$ and $(a)_- = \max\{0, -a\}$ and define

$$j_t(x,y) = \rho(x)v_t(x,y)_+ - \rho(y)v_t(x,y)_- .$$
 (flux)

Upwind continuity equation and upwind transportation metric (nonrigorous)

If $\{\rho_t\}_{t\geq 0}$ has a density $\rho_t \ll \mu$ seek for solutions to

$$\partial_t \rho_t(x) + \int_{\Omega} (\rho_t(x) v_t(x, y)_+ - \rho_t(y) v_t(x, y)_-) \eta(x, y) \, \mathrm{d}\mu(y) = 0.$$
 CE

Tentative definition of upwind transportation metric via Benamou-Brenier

 $\inf_{(\rho,v)\in \operatorname{CE}(\rho_0,\rho_1)} \left\{ \int_0^1 \iint_G \left(|v_t(x,y)_+|^2 \rho_t(x) + |v_t(x,y)_-|^2 \rho_t(y) \right) \eta(x,y) \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) \, \mathrm{d}t \right\}$ Formal nonlocal Otto calculus leads to the nonlocal interaction equation (NLIE): $v_t = -\overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho} = -\overline{\nabla} K * \rho_t \text{ with } \overline{\nabla} V(x,y) = V(y) - V(x) \text{ gives}$ $\partial_t \rho_t(x) + \int_\Omega \left(\rho_t(x) \overline{\nabla} (K * \rho_t)(x,y)_- - \rho_t(y) \overline{\nabla} (K * \rho_t)(x,y)_+ \right) \eta(x,y) \, \mathrm{d}\mu(y) = 0,$

Today:

- Gradient flows in Finslerian setting
- Stability under graph limit $\mu^n \rightharpoonup \mu$

Upwind continuity equation and upwind transportation metric (nonrigorous)

If $\{\rho_t\}_{t\geq 0}$ has a density $\rho_t \ll \mu$ seek for solutions to

$$\partial_t \rho_t(x) + \int_{\Omega} (\rho_t(x) v_t(x, y)_+ - \rho_t(y) v_t(x, y)_-) \eta(x, y) \, \mathrm{d}\mu(y) = 0.$$
 CE

Tentative definition of upwind transportation metric via Benamou-Brenier

$$\inf_{(\rho,v)\in \operatorname{CE}(\rho_0,\rho_1)} \left\{ \int_0^1 \iint_G \left(|v_t(x,y)_+|^2 \rho_t(x) + |v_t(x,y)_-|^2 \rho_t(y) \right) \eta(x,y) \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) \, \mathrm{d}t \right\}$$

Formal nonlocal Otto calculus leads to the nonlocal interaction equation (NLIE):

 $v_t = -\overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho} = -\overline{\nabla} K * \rho_t$ with $\overline{\nabla} V(x,y) = V(y) - V(x)$ gives

$$\partial_t \rho_t(x) + \int_{\Omega} \Big(\rho_t(x) \overline{\nabla} (K * \rho_t)(x, y) - \rho_t(y) \overline{\nabla} (K * \rho_t)(x, y) \Big) \eta(x, y) \, \mathrm{d}\mu(y) = 0,$$

Today:

- Gradient flows in Finslerian setting
- Stability under graph limit $\mu^n \rightharpoonup \mu$

If $\{\rho_t\}_{t\geq 0}$ has a density $\rho_t \ll \mu$ seek for solutions to

$$\partial_t \rho_t(x) + \int_{\Omega} (\rho_t(x) v_t(x, y)_+ - \rho_t(y) v_t(x, y)_-) \eta(x, y) \, \mathrm{d}\mu(y) = 0.$$
 CE

Tentative definition of upwind transportation metric via Benamou-Brenier

$$\inf_{(\rho,v)\in \operatorname{CE}(\rho_0,\rho_1)} \left\{ \int_0^1 \iint_G \left(|v_t(x,y)_+|^2 \rho_t(x) + |v_t(x,y)_-|^2 \rho_t(y) \right) \eta(x,y) \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) \, \mathrm{d}t \right\}$$

Formal nonlocal Otto calculus leads to the nonlocal interaction equation (NLIE): $v_t = -\overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho} = -\overline{\nabla} K * \rho_t \text{ with } \overline{\nabla} V(x, y) = V(y) - V(x) \text{ gives}$ $\partial_t \rho_t(x) + \int_{\Omega} \Big(\rho_t(x) \overline{\nabla} (K * \rho_t)(x, y)_- - \rho_t(y) \overline{\nabla} (K * \rho_t)(x, y)_+ \Big) \eta(x, y) \, \mathrm{d}\mu(y) = 0,$

Today:

- Gradient flows in Finslerian setting
- Stability under graph limit $\mu^n \rightharpoonup \mu$

If $\{\rho_t\}_{t\geq 0}$ has a density $\rho_t \ll \mu$ seek for solutions to

$$\partial_t \rho_t(x) + \int_{\Omega} (\rho_t(x) v_t(x, y)_+ - \rho_t(y) v_t(x, y)_-) \eta(x, y) \, \mathrm{d}\mu(y) = 0 \,.$$
 CE

Tentative definition of upwind transportation metric via Benamou-Brenier

$$\inf_{(\rho,v)\in \operatorname{CE}(\rho_0,\rho_1)} \left\{ \int_0^1 \iint_G \left(|v_t(x,y)_+|^2 \rho_t(x) + |v_t(x,y)_-|^2 \rho_t(y) \right) \eta(x,y) \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) \, \mathrm{d}t \right\}$$

Formal nonlocal Otto calculus leads to the nonlocal interaction equation (NLIE): $v_t = -\overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho} = -\overline{\nabla} K * \rho_t \text{ with } \overline{\nabla} V(x, y) = V(y) - V(x) \text{ gives}$ $\partial_t \rho_t(x) + \int_{\Omega} \Big(\rho_t(x) \overline{\nabla} (K * \rho_t)(x, y)_- - \rho_t(y) \overline{\nabla} (K * \rho_t)(x, y)_+ \Big) \eta(x, y) \, \mathrm{d}\mu(y) = 0,$

Today:

- Gradient flows in Finslerian setting
- Stability under graph limit $\mu^n
 ightarrow \mu$

- ρ might contain atoms, even if μ is Lebesgue \Rightarrow measure valued framework
- Benamou-Brenier functional is not jointly convex in (ρ_t, v_t) ⇒ flux variables
- Ω might be non-compact, for instance \mathbb{R}^d ⇒ need to ensure tightness/integrability: $\rho \in \mathcal{P}_2(\Omega)$, η has certain moments
- η might be singular towards diagonal Motivation: Want for suitable choice (μ, η^{δ}) the local limit

$$\begin{split} &\iint_{G} \left| \overline{\nabla} V(x,y) \right|^{2} \eta^{\delta}(x,y) \, \mathrm{d}\mu(y) \, \mathrm{d}\rho(x) \\ &= \iint_{G} \left| \frac{V(x) - V(y)}{|x-y|} \right|^{2} |x-y|^{2} \eta^{\delta}(x,y) \, \mathrm{d}\mu(y) \, \mathrm{d}\rho(x) \to \int_{\Omega} |\nabla V(x)|^{2} \, \mathrm{d}\rho(x) \end{split}$$

- ρ might contain atoms, even if μ is Lebesgue \Rightarrow measure valued framework
- Benamou-Brenier functional is not jointly convex in (ρ_t, v_t) \Rightarrow flux variables
- Ω might be non-compact, for instance \mathbb{R}^d ⇒ need to ensure tightness/integrability: $\rho \in \mathcal{P}_2(\Omega)$, η has certain moments
- η might be singular towards diagonal Motivation: Want for suitable choice (μ, η^{δ}) the local limit

$$\begin{split} &\iint_{G} \left| \overline{\nabla} V(x,y) \right|^{2} \eta^{\delta}(x,y) \, \mathrm{d}\mu(y) \, \mathrm{d}\rho(x) \\ &= \iint_{G} \left| \frac{V(x) - V(y)}{|x-y|} \right|^{2} |x-y|^{2} \eta^{\delta}(x,y) \, \mathrm{d}\mu(y) \, \mathrm{d}\rho(x) \to \int_{\Omega} |\nabla V(x)|^{2} \, \mathrm{d}\rho(x) \end{split}$$

- ρ might contain atoms, even if μ is Lebesgue \Rightarrow measure valued framework
- Benamou-Brenier functional is not jointly convex in (ρ_t, v_t) \Rightarrow flux variables
- Ω might be non-compact, for instance \mathbb{R}^d \Rightarrow need to ensure tightness/integrability: $\rho \in \mathcal{P}_2(\Omega)$, η has certain moments

 η might be singular towards diagonal Motivation: Want for suitable choice (μ, η^{δ}) the local limit

$$\begin{split} &\iint_{G} \left| \overline{\nabla} V(x,y) \right|^{2} \eta^{\delta}(x,y) \, \mathrm{d}\mu(y) \, \mathrm{d}\rho(x) \\ &= \iint_{G} \left| \frac{V(x) - V(y)}{|x-y|} \right|^{2} |x-y|^{2} \eta^{\delta}(x,y) \, \mathrm{d}\mu(y) \, \mathrm{d}\rho(x) \to \int_{\Omega} |\nabla V(x)|^{2} \, \mathrm{d}\rho(x) \end{split}$$

- ρ might contain atoms, even if μ is Lebesgue \Rightarrow measure valued framework
- Benamou-Brenier functional is not jointly convex in (ρ_t, v_t) \Rightarrow flux variables
- Ω might be non-compact, for instance \mathbb{R}^d \Rightarrow need to ensure tightness/integrability: $\rho \in \mathcal{P}_2(\Omega)$, η has certain moments
- η might be singular towards diagonal
 Motivation: Want for suitable choice (μ, η^δ) the local limit

$$\begin{split} &\iint_{G} \left| \overline{\nabla} V(x,y) \right|^{2} \eta^{\delta}(x,y) \, \mathrm{d}\mu(y) \, \mathrm{d}\rho(x) \\ &= \iint_{G} \left| \frac{V(x) - V(y)}{|x-y|} \right|^{2} |x-y|^{2} \eta^{\delta}(x,y) \, \mathrm{d}\mu(y) \, \mathrm{d}\rho(x) \to \int_{\Omega} |\nabla V(x)|^{2} \, \mathrm{d}\rho(x) \end{split}$$

Nonlocal continuity equation in measure valued flux form

A pair $(\rho_t, \boldsymbol{j}_t)_{t \in [0,T]} \in CE_T$ provided that $(\rho_t, \boldsymbol{j}_t) \in \mathcal{P}(\Omega) \times \mathcal{M}(G)$ for all $t \in [0,T]$:

$$\partial_t \rho_t + \overline{\nabla} \cdot \boldsymbol{j}_t = 0 \qquad \qquad \text{in } C_c^{\infty}([0,T) \times \Omega)^*$$

That is $\overline{\nabla}\cdot \pmb{j}$ is adjoint of $\overline{\nabla}\varphi(x,y)=\varphi(y)-\varphi(x)$ defined by

$$\int_0^T \int_\Omega \partial_t \varphi_t(x) \,\mathrm{d}\rho_t(x) \,\mathrm{d}t + \int_0^T \iint_G \overline{\nabla} \varphi_t(x,y) \,\eta(x,y) \,\mathrm{d}\boldsymbol{j}_t(x,y) \,\mathrm{d}t = 0 \;.$$

 $\left|\overline{\nabla}\varphi(x,y)\right| \leq \|\varphi\|_{C^{1}(\Omega)}(2 \wedge |x-y|) \Rightarrow$ well-defined under integrability condition

$$\int_0^T \iint_G (2 \wedge |x-y|) \,\eta(x,y) \,\mathrm{d}|\boldsymbol{j}_t|(x,y) \,\mathrm{d}t < +\infty \;.$$

Nonlocal continuity equation in measure valued flux form

A pair $(\rho_t, j_t)_{t \in [0,T]} \in CE_T$ provided that $(\rho_t, j_t) \in \mathcal{P}(\Omega) \times \mathcal{M}(G)$ for all $t \in [0,T]$:

 $\partial_t \rho_t + \overline{\nabla} \cdot \boldsymbol{j}_t = 0 \qquad \text{in } C_c^{\infty}([0,T) \times \Omega)^*$

Action

For $j \in \mathcal{M}(G)$, set $|\lambda| = |\rho \otimes \mu| + |\mu \otimes \rho| + |j| \in \mathcal{M}^+(G)$ and define

$$\mathcal{A}(\mu;\rho,\boldsymbol{j}) = \iint_{G} \left(\alpha \left(\frac{\mathrm{d}\boldsymbol{j}}{\mathrm{d}|\boldsymbol{\lambda}|}, \frac{\mathrm{d}(\rho \otimes \mu)}{\mathrm{d}|\boldsymbol{\lambda}|} \right) + \alpha \left(-\frac{\mathrm{d}\boldsymbol{j}}{\mathrm{d}|\boldsymbol{\lambda}|}, \frac{\mathrm{d}(\mu \otimes \rho)}{\mathrm{d}|\boldsymbol{\lambda}|} \right) \right) \eta \, \mathrm{d}|\boldsymbol{\lambda}|.$$

Hereby, the lsc convex, and pos. one-homogeneous function α is defined by

$$\alpha(j,r) := \begin{cases} \frac{(j_{+})^2}{r} & \text{if } r > 0, \\ 0 & \text{if } j = 0 \text{ and } r = 0, \\ +\infty & \text{if } j \neq 0 \text{ and } r = 0, \end{cases} \quad \text{ with } j_{+} = \max\{0, j\} \ .$$

Proposition

Let $(\rho, j) \in \mathcal{P}(\Omega) \times \mathcal{M}(\Omega)$ such that $\mathcal{A}(\mu; \rho, j) < \infty$, then:

 \blacksquare there exists a measurable nonlocal vector field $v:G\to \mathbbm{R}$ such that

$$\mathrm{d}\boldsymbol{j}(x,y) = v(x,y)_+ \eta(x,y) \,\mathrm{d}\rho(x) \,\mathrm{d}\mu(y) - v(x,y)_- \eta(x,y) \,\mathrm{d}\mu(x) \,\mathrm{d}\rho(y) \;,$$

and it holds

$$\mathcal{A}(\mu;\rho,\boldsymbol{j}) = \iint_{G} \left(\left| v(x,y)_{+} \right|^{2} + \left| v(y,x)_{-} \right|^{2} \right) \eta(x,y) \,\mathrm{d}\rho(x) \,\mathrm{d}\mu(y) \;.$$

• there exists an antisymmetric $\boldsymbol{j}^{as} \in \mathcal{M}^{as}(G)$ such that

$$\overline{\nabla} \cdot \boldsymbol{j} = \overline{\nabla} \cdot \boldsymbol{j}^{as}, \quad \text{that is} \quad \iint_G \overline{\nabla} \phi \, \eta \, \mathrm{d} \boldsymbol{j} = \iint_G \overline{\nabla} \phi \, \eta \, \mathrm{d} \boldsymbol{j}^{as} \quad \forall \phi \in C_c^\infty(\Omega),$$

and an antisymmetric $v^{as}:G\rightarrow \mathbbm{R}$ with

$$\mathcal{A}(\boldsymbol{\mu};\boldsymbol{\rho},\boldsymbol{j}^{as}) = 2 \iint_{G} |\boldsymbol{v}^{as}(\boldsymbol{x},\boldsymbol{y})_{+}|^{2} \eta \,\mathrm{d}\boldsymbol{\rho}(\boldsymbol{x}) \,\mathrm{d}\boldsymbol{\mu}(\boldsymbol{y}) \leq \mathcal{A}(\boldsymbol{\mu};\boldsymbol{\rho},\boldsymbol{j}).$$

Assumption (weight function)

The μ -measurable nonnegative symmetric lsc. function $\eta \colon G \to \mathbb{R}$ satisfies:

for some
$$C_\eta \in (0,\infty)$$

$$\sup_{x\in\Omega}\int_{\Omega}\left(|x-y|^{2}\vee|x-y|^{4}\right)\eta(x,y)\,\mathrm{d}\mu(y)\leq C_{\eta}\;.$$

Consequences:

Lower semicontinuity: if $\mu^n \rightarrow \mu$ in $\mathcal{M}(\Omega)$, $\rho^n \rightarrow \rho$ in $\mathcal{P}(\Omega)$, and $j^n \rightarrow j$ in $\mathcal{M}(G)$, then

$$\liminf_{n \to +\infty} \mathcal{A}(\mu^{n}; \rho^{n}, \boldsymbol{j}^{n}) \geq \mathcal{A}(\mu; \rho, \boldsymbol{j})$$

Integrability of flux: For $\rho \in \mathcal{P}_2(\Omega)$ and $j \in \mathcal{M}(G)$ it holds

$$\iint_G (2 \wedge |x-y|) \,\eta(x,y) \,\mathrm{d}|\boldsymbol{j}|(x,y) \leq 2\sqrt{C_\eta \mathcal{A}(\mu;\rho,\boldsymbol{j})} \,.$$

 \Rightarrow well-posedness of CE provided $\int_0^T \mathcal{A}(\mu; \rho_t, j_t) dt < \infty!$

Assumption (weight function)

The μ -measurable nonnegative symmetric lsc. function $\eta \colon G \to \mathbb{R}$ satisfies:

for some
$$C_\eta \in (0,\infty)$$

$$\sup_{x \in \Omega} \int_{\Omega} \left(|x - y|^2 \vee |x - y|^4 \right) \eta(x, y) \, \mathrm{d}\mu(y) \le C_\eta \; .$$

Consequences:

Lower semicontinuity: if $\mu^n \rightharpoonup \mu$ in $\mathcal{M}(\Omega)$, $\rho^n \rightharpoonup \rho$ in $\mathcal{P}(\Omega)$, and $j^n \rightharpoonup j$ in $\mathcal{M}(G)$, then

$$\liminf_{n \to +\infty} \mathcal{A}(\mu^{n}; \rho^{n}, \boldsymbol{j}^{n}) \geq \mathcal{A}(\mu; \rho, \boldsymbol{j})$$

Integrability of flux: For $\rho \in \mathcal{P}_2(\Omega)$ and $\boldsymbol{j} \in \mathcal{M}(G)$ it holds

$$\iint_G (2 \wedge |x-y|) \eta(x,y) \,\mathrm{d}|\boldsymbol{j}|(x,y) \leq 2\sqrt{C_\eta \mathcal{A}(\mu;\rho,\boldsymbol{j})} \,.$$

 \Rightarrow well-posedness of CE provided $\int_0^T \mathcal{A}(\mu; \rho_t, j_t) \, \mathrm{d}t < \infty!$

Continuity equation in measure valued flux form

A pair $(\rho_t, j_t)_{t \in [0,T]} \in CE_T$ provided that $(\rho_t, j_t) \in \mathcal{P}_2(\Omega) \times \mathcal{M}(G)$ for all $t \in [0,T]$:

$$\partial_t \rho_t + \overline{\nabla} \cdot \boldsymbol{j}_t = 0 \qquad \qquad \text{in } C_c([0,T) \times \Omega)^*$$

That is $\overline{\nabla}\cdot \pmb{j}$ is adjoint of $\overline{\nabla}\varphi(x,y)=\varphi(y)-\varphi(x)$ defined by

$$\int_0^T \int_\Omega \partial_t \varphi_t(x) \, \mathrm{d}\rho_t(x) \, \mathrm{d}t + \int_0^T \iint_G \overline{\nabla} \varphi_t(x,y) \, \eta(x,y) \, \mathrm{d}\boldsymbol{j}_t(x,y) \, \mathrm{d}t = 0 \, .$$

$$\begin{split} \left|\overline{\nabla}\varphi(x,y)\right| &\leq \|\varphi\|_{C^1(\Omega)}(2 \wedge |x-y|) \Rightarrow \text{well-defined under integrability condition} \\ &\int_0^T \iint_G (2 \wedge |x-y|)\eta(x,y) \,\mathrm{d}|\boldsymbol{j}_t|(x,y) \,\mathrm{d}t < +\infty \;. \end{split}$$

Existence of measure valued narrowly continuous solutions

• $\{\rho_0^n\}_{n\in\mathbb{N}} \subset \mathcal{P}_2(\Omega)$ with $\sup_{n\in\mathbb{N}} M_2(\rho_0^n) < +\infty$ and $(\rho^n, j^n) \in \operatorname{CE}_T$ such that $\sup_n \int_0^T \mathcal{A}(\rho_t^n, j_t^n) \, \mathrm{d}t < +\infty$, then also $\sup_{t\in[0,T]} \sup_{n\in\mathbb{N}} M_2(\rho_t^n) < +\infty$.

Compactness of solutions to ${\rm CE}$

Assumption (weight function)

The μ -measurable nonnegative symmetric lsc. function $\eta \colon G \to \mathbb{R}$ satisfies:

The measure $\eta(\cdot,\cdot) d\mu$ is uniformly integrable close to diagonal, that is

$$\lim_{\varepsilon \to 0} \sup_{x \in \Omega} \int_{B_{\varepsilon}(x)} |x - y|^2 \eta(x, y) \, \mathrm{d}\mu(y) = 0 \,, \quad B_{\varepsilon}(x) = \big\{ y \in \Omega : |x - y| < \varepsilon \big\}.$$

Compactness: Let $(\rho^n, j^n) \in CE_T$ for each $n \in \mathbb{N}$ such that

$$\sup_{n\in\mathbb{N}}M_2(\rho_0^n)<\infty\quad\text{and}\quad \sup_n\int_0^T\mathcal{A}(\rho_t^n,\boldsymbol{j}_t^n)\,\mathrm{d}t<+\infty.$$

Then, there exists $(
ho, \boldsymbol{j}) \in \operatorname{CE}_T$ such that

$$\begin{split} \rho_t^n &\rightharpoonup \rho_t \quad \text{in } \mathcal{P}_2(\Omega) \text{ for all } t \in [0,T] \\ \boldsymbol{j}^n &\rightharpoonup \boldsymbol{j} \quad \text{in } \mathcal{M}_{\text{loc}}(G \times [0,T]). \end{split}$$

Moreover, the action is lower semicontinuous

$$\liminf_{n \to +\infty} \int_0^T \mathcal{A}(\rho_t^n, j_t^n) \, \mathrm{d}t \ge \int_0^T \mathcal{A}(\rho_t, j_t) \, \mathrm{d}t.$$

Compactness of solutions to ${\rm CE}$

Assumption (weight function)

The μ -measurable nonnegative symmetric lsc. function $\eta \colon G \to \mathbb{R}$ satisfies:

The measure $\eta(\cdot,\cdot) d\mu$ is uniformly integrable close to diagonal, that is

$$\lim_{\varepsilon \to 0} \sup_{x \in \Omega} \int_{B_{\varepsilon}(x)} |x - y|^2 \eta(x, y) \, \mathrm{d}\mu(y) = 0 \,, \quad B_{\varepsilon}(x) = \big\{ y \in \Omega : |x - y| < \varepsilon \big\}.$$

Compactness: Let $(\rho^n, j^n) \in CE_T$ for each $n \in \mathbb{N}$ such that

$$\sup_{n\in\mathbb{N}}M_2(\rho_0^n)<\infty\quad\text{and}\quad \sup_n\int_0^T\mathcal{A}(\rho_t^n,\boldsymbol{j}_t^n)\,\mathrm{d}t<+\infty.$$

Then, there exists $(\rho, j) \in CE_T$ such that

$$\begin{split} \rho_t^n &\rightharpoonup \rho_t \quad \text{in } \mathcal{P}_2(\Omega) \text{ for all } t \in [0,T] \\ \boldsymbol{j}^n &\rightharpoonup \boldsymbol{j} \quad \text{in } \mathcal{M}_{\mathrm{loc}}(G \times [0,T]). \end{split}$$

Moreover, the action is lower semicontinuous

$$\liminf_{n \to +\infty} \int_0^T \mathcal{A}(\rho_t^n, \boldsymbol{j}_t^n) \, \mathrm{d}t \geq \int_0^T \mathcal{A}(\rho_t, \boldsymbol{j}_t) \, \mathrm{d}t.$$

Definition

For $\rho_0, \rho_1 \in \mathcal{P}_2(\Omega)$ the nonlocal upwind transportation quasimetric is defined by

$$\mathcal{T}(
ho_0,
ho_1)^2 = \inf\left\{\int_0^1 \mathcal{A}(
ho_t, \boldsymbol{j}_t) \,\mathrm{d}t : (
ho, \boldsymbol{j}) \in \operatorname{CE}(
ho_0,
ho_1)
ight\}.$$

Properties:

- The infimum is attained for $(\rho, j) \in CE(\rho_0, \rho_1)$ with $\mathcal{A}(\rho_t, j_t) = \mathcal{T}(\rho_0, \rho_1)^2$.
- Comparison with Wasserstein $W_1(\rho^0, \rho^1) \leq 2\sqrt{C_{\eta}}\sqrt{\mathcal{T}(\rho^0, \rho^1)}$. \Rightarrow topology is stronger than W_1 .
- \blacksquare T is jointly narrowly lower semicontinuous.
- **T** is a quasimetric on $\mathcal{P}_2(\Omega)$, in particular it is in general non-symmetric!
- For $\rho \in \mathcal{P}_2(\Omega)$ holds $j \in T_{\rho}\mathcal{P}_2(\Omega)$ iff $j^+ \ll \rho \otimes \mu$ and for the density $v_+ = \frac{\mathrm{d}j^+}{\mathrm{d}(\rho \otimes \mu)}$ it holds that v defined by

 $v(x,y) := v_+(x,y) - v_+(y,x) \quad \text{satisfies} \quad v \in \overline{\{\overline{\nabla}\varphi \mid \varphi \in C_c^\infty(\Omega)\}}^{L^2(\eta \mid \varphi \otimes \mu)}$

Definition

For $\rho_0, \rho_1 \in \mathcal{P}_2(\Omega)$ the nonlocal upwind transportation quasimetric is defined by

$$\mathcal{T}(\rho_0,\rho_1)^2 = \inf\left\{\int_0^1 \mathcal{A}(\rho_t, \boldsymbol{j}_t) \,\mathrm{d}t : (\rho, \boldsymbol{j}) \in \mathrm{CE}(\rho_0,\rho_1)\right\}.$$

Properties:

- The infimum is attained for $(\rho, \mathbf{j}) \in CE(\rho_0, \rho_1)$ with $\mathcal{A}(\rho_t, \mathbf{j}_t) = \mathcal{T}(\rho_0, \rho_1)^2$.
- Comparison with Wasserstein $W_1(\rho^0, \rho^1) \leq 2\sqrt{C_\eta}\sqrt{\mathcal{T}(\rho^0, \rho^1)}.$
 - \Rightarrow topology is stronger than W_1 .
- \blacksquare T is jointly narrowly lower semicontinuous.
- **\mathcal{T}** is a quasimetric on $\mathcal{P}_2(\Omega)$, in particular it is in general non-symmetric!
- $\{\rho_t\}_{t\in[0,1]} \in \mathrm{AC}(0,1; (\mathcal{P}_2(\Omega),\mathcal{T})) \text{ iff } \int_0^1 \sqrt{\mathcal{A}(\rho_t, j_t)} \,\mathrm{d}t < \infty.$
- For $\rho \in \mathcal{P}_2(\Omega)$ holds $\boldsymbol{j} \in T_{\rho}\mathcal{P}_2(\Omega)$ iff $\boldsymbol{j}^+ \ll \rho \otimes \mu$ and for the density $v_+ = \frac{\mathrm{d}\boldsymbol{j}^+}{\mathrm{d}(\rho \otimes \mu)}$ it holds that v defined by

$$v(x,y) := v_+(x,y) - v_+(y,x) \quad \text{satisfies} \quad v \in \overline{\left\{\overline{\nabla}\varphi \mid \varphi \in C^\infty_c(\Omega)\right\}}^{L^2(\eta \, \rho \otimes \mu)}$$

Two-point space

Fix the graph $\Omega = \{0,1\}$ with $\eta(0,1) = \eta(1,0) = \alpha > 0$, $\mu(0) = p \in (0,1)$ and $\mu(1) = q \in (0,1)$ such that p + q = 1. For all $\rho, \nu \in \mathcal{P}(\Omega)$ it holds

$$\mathcal{T}(\rho,\nu) = \begin{cases} \sqrt{\frac{2}{\alpha p}} \left(\sqrt{\rho(1)} - \sqrt{\nu(1)}\right), & \text{if } \rho_0 < \nu_0\\ \sqrt{\frac{2}{\alpha q}} \left(\sqrt{\rho(0)} - \sqrt{\nu(0)}\right), & \text{if } \nu_0 < \rho_0 \end{cases}$$

André Schlichting • Jump processes and the upwind transportation metric • September 05, 2019 • Page 13 (19)

Finslerian geometry and gradient flows

By previous representation: Associate to $(\rho_t)_{t\in[0,1]} \in \mathrm{AC}(0,1;(\mathcal{P}_2(\Omega),\mathcal{T}))$ an antisymmetric $(w_t)_{t\in[0,1]}$ such that $(\rho_t, j_t)_{t\in[0,1]} \in \mathrm{CE}$ and

 $\mathrm{d}\boldsymbol{j}_t(x,y) = w_t(x,y)_+ \,\mathrm{d}\rho(x) \,\mathrm{d}\mu(y) - w_t(x,y)_- \,\mathrm{d}\mu(x) \,\mathrm{d}\rho(y) \;.$

The geometry induced by \mathcal{T} is Finslerian:

 \Rightarrow inner product in tangent space depends on ρ and $w \in T_{\rho}\mathcal{P}_{2}(\Omega)$!

Finslerian inner product

For $\rho \in \mathcal{P}_2(\Omega)$ and $w \in T_\rho \mathcal{P}_2(\Omega)$ define $g_{\rho,w} \colon T_\rho \mathcal{P}_2(\Omega) \times T_\rho \mathcal{P}_2(\Omega) \to \mathbb{R}$ by

$$g_{\rho,w}(u,v) = \iint_{G} u(x,y)v(x,y) \eta(x,y) \times \\ \times \left(\chi_{\{w>0\}}(x,y) \,\mathrm{d}\rho(x) \,\mathrm{d}\mu(y) + \chi_{\{w<0\}}(x,y) \,\mathrm{d}\mu(x) \,\mathrm{d}\rho(y) \right) \,.$$

ightarrow define gradient flow for interaction energy ${\cal E}$ in terms of curves of maximal slope

See also [Ohta-Sturm '09, '12] and [Agueh '12] for gradient flows in Finslerian setting.

$$\begin{split} g_{\rho,w}(u,v) &= \iint_{G} u(x,y) v(x,y) \, \eta(x,y) \times \\ & \times \left(\chi_{\{w>0\}}(x,y) \, \mathrm{d}\rho(x) \, \mathrm{d}\mu(y) + \chi_{\{w<0\}}(x,y) \, \mathrm{d}\mu(x) \, \mathrm{d}\rho(y) \right) \, . \end{split}$$

Chain-rule: For
$$(\rho_t)_{t \in [0,1]} \in AC(0,1; (\mathcal{P}_2(\Omega), \mathcal{T}))$$
 and $\varphi \in C_c^{\infty}(\Omega)$
$$\frac{\mathrm{d}}{\mathrm{d}t} \int \varphi \,\mathrm{d}\rho_t = \iint \overline{\nabla} \varphi(x, y) \eta(x, y) \,\mathrm{d}\boldsymbol{j}_t(x, y) = g_{\rho_t, w_t}(w_t, \overline{\nabla}\varphi) \;.$$

One-sided Cauchy-Schwarz: For all $v, w \in T_{\rho}\mathcal{P}_2(\Omega)$ holds

$$g_{\rho,w}(w,v) = \iint_{G} v(x,y)\eta(x,y) \left(w(x,y)_{+} d\rho(x) d\mu(y) - w(x,y)_{-} d\mu(x) d\rho(y)\right)$$

$$\leq \iint_{G} v(x,y)_{+}w(x,y)_{+}\eta(x,y) d\rho(x) d\mu(y)$$

$$+ \iint_{G} v(x,y)_{-}w(x,y)_{-}\eta(x,y) d\mu(x) d\rho(y)$$

$$\leq \sqrt{g_{\rho,v}(v,v) g_{\rho,w}(w,w)}.$$

$$g_{\rho,w}(u,v) = \iint_{G} u(x,y)v(x,y) \eta(x,y) \times \\ \times \left(\chi_{\{w>0\}}(x,y) \,\mathrm{d}\rho(x) \,\mathrm{d}\mu(y) + \chi_{\{w<0\}}(x,y) \,\mathrm{d}\mu(x) \,\mathrm{d}\rho(y) \right) \,.$$

Chain-rule: For
$$(\rho_t)_{t\in[0,1]} \in \operatorname{AC}(0,1; (\mathcal{P}_2(\Omega),\mathcal{T}))$$
 and $\varphi \in C_c^{\infty}(\Omega)$
$$\frac{\mathrm{d}}{\mathrm{d}t} \int \varphi \,\mathrm{d}\rho_t = \iint \overline{\nabla}\varphi(x,y)\eta(x,y) \,\mathrm{d}\boldsymbol{j}_t(x,y) = g_{\rho_t,w_t}(w_t,\overline{\nabla}\varphi) \;.$$

One-sided Cauchy-Schwarz: For all $v, w \in T_{\rho}\mathcal{P}_2(\Omega)$ holds

$$g_{\rho,w}(w,v) = \iint_{G} v(x,y)\eta(x,y) (w(x,y)_{+} d\rho(x) d\mu(y) - w(x,y)_{-} d\mu(x) d\rho(y))$$

$$\leq \iint_{G} v(x,y)_{+}w(x,y)_{+}\eta(x,y) d\rho(x) d\mu(y)$$

$$+ \iint_{G} v(x,y)_{-}w(x,y)_{-}\eta(x,y) d\mu(x) d\rho(y)$$

$$\leq \sqrt{g_{\rho,v}(v,v) g_{\rho,w}(w,w)}.$$

$$g_{\rho,w}(u,v) = \iint_{G} u(x,y)v(x,y) \eta(x,y) \times \\ \times \left(\chi_{\{w>0\}}(x,y) \,\mathrm{d}\rho(x) \,\mathrm{d}\mu(y) + \chi_{\{w<0\}}(x,y) \,\mathrm{d}\mu(x) \,\mathrm{d}\rho(y) \right) \,.$$

Chain-rule: For
$$(\rho_t)_{t \in [0,1]} \in \operatorname{AC}(0,1; (\mathcal{P}_2(\Omega), \mathcal{T}))$$
 and $\varphi \in C_c^{\infty}(\Omega)$
$$\frac{\mathrm{d}}{\mathrm{d}t} \int \varphi \,\mathrm{d}\rho_t = \iint \overline{\nabla} \varphi(x, y) \eta(x, y) \,\mathrm{d}\boldsymbol{j}_t(x, y) = g_{\rho_t, w_t}(w_t, \overline{\nabla}\varphi) \;.$$

One-sided Cauchy-Schwarz: For all $v, w \in T_{\rho}\mathcal{P}_2(\Omega)$ holds

$$\begin{split} g_{\rho,w}(w,v) &= \iint_G v(x,y)\eta(x,y) \big(w(x,y)_+ \,\mathrm{d}\rho(x) \,\mathrm{d}\mu(y) - w(x,y)_- \,\mathrm{d}\mu(x) \,\mathrm{d}\rho(y) \big) \\ &\leq \iint_G v(x,y)_+ w(x,y)_+ \eta(x,y) \,\mathrm{d}\rho(x) \,\mathrm{d}\mu(y) \\ &\quad + \iint_G v(x,y)_- w(x,y)_- \eta(x,y) \,\mathrm{d}\mu(x) \,\mathrm{d}\rho(y) \\ &\leq \sqrt{g_{\rho,v}(v,v) \,g_{\rho,w}(w,w)} \,. \end{split}$$

Recall: interaction energy \mathcal{E}

$$\mathcal{E}(\rho) = \frac{1}{2} \iint_{\Omega \times \Omega} K(x, y) \,\mathrm{d}\rho(x) \,\mathrm{d}\rho(y) \;.$$

Assumption: The potential $K : \Omega \times \Omega \rightarrow \mathbb{R}$ satisfies

(K1) $K \in C(\Omega \times \Omega)$; (K2) K is symmetric, i.e. K(x, y) = K(y, x), for all $(x, y) \in \Omega \times \Omega$; (K3) for some L > 1 and for all $(x, y), (\tilde{x}, \tilde{y}) \in \Omega \times \Omega$

$$|K(x,y) - K(x',y')| \le L\left(|(x,y) - (\tilde{x},\tilde{y})| \lor |(x,y) - (\tilde{x},\tilde{y})|^2 \right).$$

local Lipschitz and at most quadratic growth

Chain rule

Let $\rho \in AC(0,T; (\mathcal{P}_2(\Omega),\mathcal{T}))$, then $\forall 0 \leq s \leq t \leq T$

$$\mathcal{E}(\rho_t) - \mathcal{E}(\rho_s) = \int_s^t \iint_G \overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}(x, y) \eta(x, y) \, \mathrm{d}j_\tau(x, y) \, \mathrm{d}\tau = \int_s^t g_{\rho_\tau, w_\tau}\left(w_\tau, \overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}\right) \mathrm{d}\tau$$

Recall: interaction energy ${\cal E}$

$$\mathcal{E}(\rho) = \frac{1}{2} \iint_{\Omega \times \Omega} K(x, y) \,\mathrm{d}\rho(x) \,\mathrm{d}\rho(y) \;.$$

Assumption: The potential $K : \Omega \times \Omega \rightarrow \mathbb{R}$ satisfies

(K1) $K \in C(\Omega \times \Omega)$; (K2) K is symmetric, i.e. K(x, y) = K(y, x), for all $(x, y) \in \Omega \times \Omega$; (K3) for some $L \ge 1$ and for all $(x, y), (\tilde{x}, \tilde{y}) \in \Omega \times \Omega$

$$|K(x,y) - K(x',y')| \le L \left(|(x,y) - (\tilde{x},\tilde{y})| \lor |(x,y) - (\tilde{x},\tilde{y})|^2 \right).$$

local Lipschitz and at most quadratic growth

Chain rule

Let $\rho \in AC(0, T; (\mathcal{P}_2(\Omega), \mathcal{T}))$, then $\forall \ 0 \le s \le t \le T$

$$\mathcal{E}(\rho_t) - \mathcal{E}(\rho_s) = \int_s^t \iint_G \overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}(x, y) \eta(x, y) \, \mathrm{d}\boldsymbol{j}_{\tau}(x, y) \, \mathrm{d}\tau = \int_s^t g_{\rho_{\tau}, w_{\tau}}\left(w_{\tau}, \overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}\right) \mathrm{d}\tau$$

Chain rule

Let
$$\rho \in AC(0, T; (\mathcal{P}_2(\Omega), \mathcal{T}))$$
, then $\forall 0 \leq s \leq t \leq T$

$$\mathcal{E}(\rho_t) - \mathcal{E}(\rho_s) = \int_s^t \iint_G \overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}(x, y) \eta(x, y) \, \mathrm{d}\boldsymbol{j}_\tau(x, y) \, \mathrm{d}\tau = \int_s^t g_{\rho\tau, w\tau}\left(w_\tau, \overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}\right) \mathrm{d}\tau$$

Curves of maximal slope: For any $\rho \in AC(0,T; (\mathcal{P}_2(\Omega), \mathcal{T}))$ holds

$$\mathcal{E}(\rho_T) - \mathcal{E}(\rho_0) \ge -\frac{1}{2} \int_0^T g_{\rho_t, -\overline{\nabla} \frac{\delta \mathcal{E}(\rho_t)}{\delta \rho}} \left(-\overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}, -\overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho} \right) \mathrm{d}t - \frac{1}{2} \int_0^T g_{\rho_t, w_t}(w_t, w_t) \, \mathrm{d}t \, .$$

with equality iff $w_t = -\overline{\nabla} \frac{\delta \mathcal{E}(\rho_t)}{\delta \rho} = -\overline{\nabla} K * \rho_t$ \Rightarrow Define the nonnegative de Giorgi functional by

$$\mathcal{G}_T(\rho) = \mathcal{E}(\rho_T) - \mathcal{E}(\rho_0) + \frac{1}{2} \int_0^T \mathcal{D}(\rho_t) \,\mathrm{d}t + \frac{1}{2} \int_0^T \mathcal{A}(\rho_t, w_t) \,\mathrm{d}t \ge 0 ,$$

where

$$\mathcal{D}(\rho_t) = 2 \int_G \left| \overline{\nabla} \frac{\delta \mathcal{E}(\rho_t)}{\delta \rho}(x, y)_- \right|^2 \eta(x, y) \,\mathrm{d}\rho(x) \,\mathrm{d}\mu(y) \;.$$

Variational characterization of solutions

The de Giorgi functional gives a variation characterization of solutions to

$$\partial_t \rho + \overline{\nabla} \cdot \boldsymbol{j} = 0 \quad \text{in } C_c^{\infty}([0,T] \times \Omega)^* ,$$
 (NLIE)

where the flux j is given by

$$d\mathbf{j}(x,y) = \overline{\nabla}(K*\rho)(x,y) - \eta(x,y) \, \mathrm{d}\rho(x) \, \mathrm{d}\mu(y) - \overline{\nabla}(K*\rho)(x,y) + \eta(x,y) \, \mathrm{d}\rho(y) \, \mathrm{d}\mu(x) \, .$$

Theorem (Curves of maximal slope characterization)

Let $(\rho_t)_{t\in[0,T]} \in \mathrm{AC}^2(0,T;(\mathcal{P}_2(\Omega),\mathcal{T}))$ be such that $\int_0^T \mathcal{D}(\rho_t,w_t) \,\mathrm{d}t < \infty$, then

$$\mathcal{G}_T(\rho) \ge 0$$

- $\mathcal{G}_T(\rho) = 0$ iff $(\rho_t)_{t \in [0,T]}$ is a weak solution to (NLIE).
- Minimizers exist by direct method, however not necessarily global!
- Possibility: Redo the minimizing movement scheme in the quasimetric setting
- Instead: Show existence via finite dimensional approximation and stability
- Alternatively: Existence of (strong) solutions via classical fix-point argument

Variational characterization of solutions

The de Giorgi functional gives a variation characterization of solutions to

$$\partial_t \rho + \overline{\nabla} \cdot \boldsymbol{j} = 0 \quad \text{in } C_c^{\infty}([0,T] \times \Omega)^* ,$$
 (NLIE)

where the flux j is given by

$$\mathrm{d}\boldsymbol{j}(x,y) = \overline{\nabla}(K*\rho)(x,y)_{-}\eta(x,y)\,\mathrm{d}\rho(x)\,\mathrm{d}\mu(y) - \overline{\nabla}(K*\rho)(x,y)_{+}\eta(x,y)\,\mathrm{d}\rho(y)\,\mathrm{d}\mu(x)\,.$$

Theorem (Curves of maximal slope characterization)

Let $(\rho_t)_{t\in[0,T]} \in \mathrm{AC}^2(0,T;(\mathcal{P}_2(\Omega),\mathcal{T}))$ be such that $\int_0^T \mathcal{D}(\rho_t,w_t) \,\mathrm{d}t < \infty$, then

$$\mathbf{\mathcal{G}}_T(\rho) \ge 0$$

$$\mathcal{G}_T(\rho) = 0$$
 iff $(\rho_t)_{t \in [0,T]}$ is a weak solution to (NLIE).

- Minimizers exist by direct method, however not necessarily global!
- Possibility: Redo the minimizing movement scheme in the quasimetric setting
- Instead: Show existence via finite dimensional approximation and stability
- Alternatively: Existence of (strong) solutions via classical fix-point argument

Stability with respect to graph approximations

Let $\mu^n \in \mathcal{M}(\Omega)$ be such that $\mu^n \rightharpoonup \mu$ and define

$$\mathcal{G}_T(\boldsymbol{\mu}^n;\boldsymbol{\rho}^n) = \mathcal{E}(\boldsymbol{\rho}_T^n) - \mathcal{E}(\boldsymbol{\rho}_0^n) + \frac{1}{2} \int_0^T \mathcal{A}(\boldsymbol{\mu}^n;\boldsymbol{\rho}_t^n,\boldsymbol{j}_t^n) \,\mathrm{d}t + \frac{1}{2} \int_0^T \mathcal{D}(\boldsymbol{\mu}^n;\boldsymbol{\rho}_t^n) \,\mathrm{d}t \,.$$

Stability of gradient flows à la Sandier-Serfaty

Let $\rho^n \in AC^2(0,T; (\mathcal{P}_2(\Omega),\mathcal{T}_{\mu^n}))$ such that $\sup_n \mathcal{G}_T(\mu^n; \rho^n) < \infty$. Then, there exists $\rho \in AC^2(0,T; (\mathcal{P}(\Omega),\mathcal{T}_{\mu}))$ such that

$$\rho_t^n \rightarrow \rho_t \quad \text{in } \mathcal{P}_2(\Omega) \text{ for a.e. } t \in [0,T]$$
$$j^n \rightarrow j \quad \text{in } \mathcal{M}_{\text{loc}}(G \times [0,T])$$
$$\liminf_n \int_0^T \mathcal{A}(\mu^n; \rho_t^n, j_t^n) \, \mathrm{d}t \ge \int_0^T \mathcal{A}(\mu; \rho_t, j_t) \, \mathrm{d}t$$
$$\liminf_n \int_0^T \mathcal{D}(\mu^n; \rho_t^n) \, \mathrm{d}t \ge \int_0^T \mathcal{D}(\mu; \rho_t) \, \mathrm{d}t \; .$$

In particular weak solutions of (NLIE) on graph (μ^n, η) converge to ones on (μ, η) .

Corollary: Existence of weak solution to (NLIE) via finite-dimensional approximation.

Stability with respect to graph approximations

Let $\mu^n \in \mathcal{M}(\Omega)$ be such that $\mu^n \rightharpoonup \mu$ and define

$$\mathcal{G}_T(\boldsymbol{\mu}^n;\boldsymbol{\rho}^n) = \mathcal{E}(\boldsymbol{\rho}_T^n) - \mathcal{E}(\boldsymbol{\rho}_0^n) + \frac{1}{2} \int_0^T \mathcal{A}(\boldsymbol{\mu}^n;\boldsymbol{\rho}_t^n,\boldsymbol{j}_t^n) \,\mathrm{d}t + \frac{1}{2} \int_0^T \mathcal{D}(\boldsymbol{\mu}^n;\boldsymbol{\rho}_t^n) \,\mathrm{d}t \,.$$

Stability of gradient flows à la Sandier-Serfaty

Let $\rho^n \in AC^2(0,T;(\mathcal{P}_2(\Omega),\mathcal{T}_{\mu^n}))$ such that $\sup_n \mathcal{G}_T(\mu^n;\rho^n) < \infty$. Then, there exists $\rho \in AC^2(0,T;(\mathcal{P}(\Omega),\mathcal{T}_{\mu}))$ such that

$$\begin{split} \rho_t^n &\to \rho_t \quad \text{in } \mathcal{P}_2(\Omega) \text{ for a.e. } t \in [0,T] \\ \boldsymbol{j}^n &\to \boldsymbol{j} \quad \text{in } \mathcal{M}_{\text{loc}}(G \times [0,T]) \\ \liminf_n \int_0^T \mathcal{A}(\mu^n;\rho_t^n,\boldsymbol{j}_t^n) \, \mathrm{d}t \geq \int_0^T \mathcal{A}(\mu;\rho_t,\boldsymbol{j}_t) \, \mathrm{d}t \\ \liminf_n \int_0^T \mathcal{D}(\mu^n;\rho_t^n) \, \mathrm{d}t \geq \int_0^T \mathcal{D}(\mu;\rho_t) \, \mathrm{d}t \; . \end{split}$$

In particular weak solutions of (NLIE) on graph (μ^n, η) converge to ones on (μ, η) .

Corollary: Existence of weak solution to (NLIE) via finite-dimensional approximation.

Stability with respect to graph approximations

Let $\mu^n \in \mathcal{M}(\Omega)$ be such that $\mu^n \rightharpoonup \mu$ and define

$$\mathcal{G}_T(\boldsymbol{\mu}^n;\boldsymbol{\rho}^n) = \mathcal{E}(\boldsymbol{\rho}_T^n) - \mathcal{E}(\boldsymbol{\rho}_0^n) + \frac{1}{2} \int_0^T \mathcal{A}(\boldsymbol{\mu}^n;\boldsymbol{\rho}_t^n,\boldsymbol{j}_t^n) \,\mathrm{d}t + \frac{1}{2} \int_0^T \mathcal{D}(\boldsymbol{\mu}^n;\boldsymbol{\rho}_t^n) \,\mathrm{d}t \;.$$

Stability of gradient flows à la Sandier-Serfaty

Let $\rho^n \in AC^2(0,T;(\mathcal{P}_2(\Omega),\mathcal{T}_{\mu^n}))$ such that $\sup_n \mathcal{G}_T(\mu^n;\rho^n) < \infty$. Then, there exists $\rho \in AC^2(0,T;(\mathcal{P}(\Omega),\mathcal{T}_{\mu}))$ such that

$$\begin{split} \rho_t^n &\to \rho_t \quad \text{in } \mathcal{P}_2(\Omega) \text{ for a.e. } t \in [0,T] \\ \boldsymbol{j}^n &\to \boldsymbol{j} \quad \text{in } \mathcal{M}_{\text{loc}}(G \times [0,T]) \\ \liminf_n &\int_0^T \mathcal{A}(\mu^n;\rho_t^n,\boldsymbol{j}_t^n) \, \text{d}t \geq \int_0^T \mathcal{A}(\mu;\rho_t,\boldsymbol{j}_t) \, \text{d}t \\ \liminf_n &\int_0^T \mathcal{D}(\mu^n;\rho_t^n) \, \text{d}t \geq \int_0^T \mathcal{D}(\mu;\rho_t) \, \text{d}t \; . \end{split}$$

In particular weak solutions of (NLIE) on graph (μ^n, η) converge to ones on (μ, η) .

Corollary: Existence of weak solution to (NLIE) via finite-dimensional approximation.

- convexity vs. contractivity vs. stability
 - \Rightarrow in Finslerian geometry these become different concepts [Ohta-Sturm '12]
- \blacksquare local limit $\delta \rightarrow 0$ to obtain interaction equation
- diagonal limits: $N \to \infty$ and $\delta \to 0$ to obtain even different PDEs
- minimizing movement schemes (JKO) ⇒ extend classical theory to quasimetric setting and be
- Free energies including entropies

$$\mathcal{F}^{\sigma}(\rho) = \sigma \int \log \rho(x) \, \mathrm{d}\rho(x) + \frac{1}{2} \int K(x,y) \, \mathrm{d}\rho(x) \, \mathrm{d}\rho(y)$$

$$j^{\sigma}(x,y) = v(x,y) \frac{\rho(x)e^{\frac{v(x,y)}{\sigma}} - \rho(y)e^{-\frac{v(x,y)}{\sigma}}}{e^{\frac{v(x,y)}{\sigma}} - e^{-\frac{v(x,y)}{\sigma}}} \xrightarrow{\sigma \to 0} \rho(x)v(x,y)_+ - \rho(y)v(x,y)_- .$$

convexity vs. contractivity vs. stability

 \Rightarrow in Finslerian geometry these become different concepts [Ohta-Sturm '12]

- local limit $\delta \rightarrow 0$ to obtain interaction equation
- diagonal limits: $N \to \infty$ and $\delta \to 0$ to obtain even different PDEs

■ minimizing movement schemes (JKO) → extend classical theory to quasimetric setting and b

Free energies including entropies

$$\mathcal{F}^{\sigma}(\rho) = \sigma \int \log \rho(x) \, \mathrm{d}\rho(x) + \frac{1}{2} \int K(x,y) \, \mathrm{d}\rho(x) \, \mathrm{d}\rho(y)$$

$$j^{\sigma}(x,y) = v(x,y) \frac{\rho(x)e^{\frac{v(x,y)}{\sigma}} - \rho(y)e^{-\frac{v(x,y)}{\sigma}}}{e^{\frac{v(x,y)}{\sigma}} - e^{-\frac{v(x,y)}{\sigma}}} \xrightarrow{\sigma \to 0} \rho(x)v(x,y)_+ - \rho(y)v(x,y)_- .$$

convexity vs. contractivity vs. stability

 \Rightarrow in Finslerian geometry these become different concepts [Ohta-Sturm '12]

- local limit $\delta \rightarrow 0$ to obtain interaction equation
- diagonal limits: $N \to \infty$ and $\delta \to 0$ to obtain even different PDEs

minimizing movement schemes (JKO)

 \Rightarrow extend classical theory to quasimetric setting and beyond

Free energies including entropies

$$\mathcal{F}^{\sigma}(\rho) = \sigma \int \log \rho(x) \, \mathrm{d}\rho(x) + \frac{1}{2} \int K(x,y) \, \mathrm{d}\rho(x) \, \mathrm{d}\rho(y)$$

$$j^{\sigma}(x,y) = v(x,y) \frac{\rho(x)e^{\frac{v(x,y)}{\sigma}} - \rho(y)e^{-\frac{v(x,y)}{\sigma}}}{e^{\frac{v(x,y)}{\sigma}} - e^{-\frac{v(x,y)}{\sigma}}} \xrightarrow{\sigma \to 0} \rho(x)v(x,y)_+ - \rho(y)v(x,y)_- .$$

convexity vs. contractivity vs. stability

 \Rightarrow in Finslerian geometry these become different concepts [Ohta-Sturm '12]

- local limit $\delta \rightarrow 0$ to obtain interaction equation
- diagonal limits: $N \to \infty$ and $\delta \to 0$ to obtain even different PDEs
- minimizing movement schemes (JKO)
 - \Rightarrow extend classical theory to quasimetric setting and beyond
- Free energies including entropies

$$\mathcal{F}^{\sigma}(\rho) = \sigma \int \log \rho(x) \, \mathrm{d}\rho(x) + \frac{1}{2} \int K(x,y) \, \mathrm{d}\rho(x) \, \mathrm{d}\rho(y)$$

$$j^{\sigma}(x,y) = v(x,y) \frac{\rho(x)e^{\frac{v(x,y)}{\sigma}} - \rho(y)e^{-\frac{v(x,y)}{\sigma}}}{e^{\frac{v(x,y)}{\sigma}} - e^{-\frac{v(x,y)}{\sigma}}} \xrightarrow{\sigma \to 0} \rho(x)v(x,y)_+ - \rho(y)v(x,y)_- .$$

convexity vs. contractivity vs. stability

 \Rightarrow in Finslerian geometry these become different concepts [Ohta-Sturm '12]

- local limit $\delta \rightarrow 0$ to obtain interaction equation
- diagonal limits: $N \to \infty$ and $\delta \to 0$ to obtain even different PDEs
- minimizing movement schemes (JKO)

 \Rightarrow extend classical theory to quasimetric setting and beyond

Free energies including entropies

$$\mathcal{F}^{\sigma}(\rho) = \sigma \int \log \rho(x) \, \mathrm{d}\rho(x) + \frac{1}{2} \int K(x,y) \, \mathrm{d}\rho(x) \, \mathrm{d}\rho(y)$$

$$j^{\sigma}(x,y) = v(x,y) \frac{\rho(x)e^{\frac{v(x,y)}{\sigma}} - \rho(y)e^{-\frac{v(x,y)}{\sigma}}}{e^{\frac{v(x,y)}{\sigma}} - e^{-\frac{v(x,y)}{\sigma}}} \stackrel{\sigma \to 0}{\to} \rho(x)v(x,y)_+ - \rho(y)v(x,y)_- .$$

convexity vs. contractivity vs. stability

 \Rightarrow in Finslerian geometry these become different concepts [Ohta-Sturm '12]

- local limit $\delta \rightarrow 0$ to obtain interaction equation
- diagonal limits: $N \to \infty$ and $\delta \to 0$ to obtain even different PDEs
- minimizing movement schemes (JKO)

 \Rightarrow extend classical theory to quasimetric setting and beyond

Free energies including entropies

$$\mathcal{F}^{\sigma}(\rho) = \sigma \int \log \rho(x) \,\mathrm{d}\rho(x) + \frac{1}{2} \int K(x,y) \,\mathrm{d}\rho(x) \,\mathrm{d}\rho(y)$$

For $\sigma > 0$ expect a Scharfetter-Gummel gradient structure with flux

$$j^{\sigma}(x,y) = v(x,y) \frac{\rho(x)e^{\frac{v(x,y)}{\sigma}} - \rho(y)e^{-\frac{v(x,y)}{\sigma}}}{e^{\frac{v(x,y)}{\sigma}} - e^{-\frac{v(x,y)}{\sigma}}} \xrightarrow{\sigma \to 0} \rho(x)v(x,y)_+ - \rho(y)v(x,y)_- .$$

Thank you for your attention!

