
Scaling limit of uniform spanning tree in three
dimensions

Daisuke Shiraishi, Kyoto University

ongoing work with Omer Angel (UBC), David Croydon (Kyoto
University) and Sarai Hernandez Torres (UBC)

September 2019, Fukuoka University

1 / 23



Uniform Spanning Tree (UST)

I For a finite graph G = (V ,E ), a spanning tree T of G is a
subgraph of G that is a tree with (the vertex set of T ) = V .

I A uniform spanning tree (UST) in G is a random spanning
tree chosen uniformly from a set of all spanning trees.

I UST has important connections to several areas:
I Loop-erased random walk (LERW)
I Loop soup
I Conformally invariant scaling limits
I The Abelian sandpile model
I Gaussian free field
I Domino tiling
I Random cluster model
I Random interlacements
I Potential theory
I Amenability · · ·
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Uniform Spanning Tree (UST)

2D UST in a fine grid.
Picture credit: Adrien Kassel.
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Uniform Spanning Tree (UST)

Today’s talk: Existence of the scaling limit of UST in 2−nZ3 as
n→∞ w.r.t. the Gromov-Hausdorff-Prokhorov topology.
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The Gromov-Hausdorff-Prokhorov convergence

Z

ψ2

X2

ψ1

X1

Two isometric embeddings ψi : Xi → Z (i = 1, 2).
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The Gromov-Hausdorff-Prokhorov convergence

I A quadruplet X = (X , dX , ρX , µX ) is called a measured
pointed compact metric space if

I (X , dX ) is a compact metric space,
I ρX ∈ X is a distinguished point,
I µX is a locally finite Borel measure on (X , dX ).

I For two measured pointed compact metric spaces
Xi = (Xi , di , ρi , µi ) (i = 1, 2), define dGHP(X1,X2) by

dGHP(X1,X2) = inf
{
dZ

(
ψ1(ρ1), ψ2(ρ2)

)
∨ dZ

Haus

(
ψ1(X1), ψ2(X2)

)
∨ dZ

Prokhorov

(
µ1 ◦ ψ−11 , µ2 ◦ ψ−12

)}
,

where the infimum is over all metric spaces (Z , dZ ) and
isometric embeddings ψi : Xi → Z (i = 1, 2).
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Main Result

I Let Un be the UST in 2−nZ3 with the graph distance dUn .

I Suppose that (Un, dUn) is pointed at the origin.

I µUn : counting measure on 2−nZ3 (i.e., the measure which
places a unit mass at each vertex of Un).

I Let LERWn be the loop-erased random walk from 0 to
∂B(2n). Denote the number of steps of LERWn by

∣∣LERWn

∣∣.
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SRW and LERW

O

2n

Erase Loops
O

SRW (left) and LERWn (right).
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Main Result

I Let Un be the UST in 2−nZ3 with the graph distance dUn .
I Suppose that (Un, dUn) is pointed at the origin.
I µUn : counting measure on 2−nZ3 (i.e., the measure which

places a unit mass at each vertex of Un).
I Let LERWn be the loop-erased random walk from 0 to
∂B(2n). Denote the number of steps of LERWn by

∣∣LERWn

∣∣.

I (S. ’14, Li-S. ’18) It is proved that there exists a constant
β ∈ (1, 53 ] s.t.

lim
n→∞

2−βnE
(∣∣LERWn

∣∣) ∈ (0,∞).

I Typically dUn

(
0, (1, 0, 0)

)
� 2βn.

Theorem (Angel-Croydon-S.-Hernandez Torres. ’19+)

As n→∞, the measured pointed tree (Un, 2−βndUn , 0, 2−3nµUn)
converges weakly w.r.t. the GHP topology.
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Remarks

I Remark 1: This is the first result to prove the existence of
the scaling limit of 3D UST!

I Remark 2: One of the key ingredient is the convergence of
3D LERW in the natural parametrization established by Li-S.
(’18).

I Remark 3: Kozma (’07) proved the existence of weak
convergence limit of 3D LERW w.r.t. the Hausdorff metric.
But the topology he used is weaker than we want.

I Remark 4: We also study the SRW on Un and its scaling
limit in our forthcoming paper.

(Scaling limit of the SRW on 2D UST was studied in
Barlow-Croydon-Kumagai (’17).)
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Some words about the proof

I Let U be the UST in Z3 with the graph distance dU .

I Let BU (x , r) = {y ∈ U | dU (x , y) < r}.
I Roughly spaeking, B(0, r) ≈ BU (0, rβ).

Tightness follows from the following proposition:

Proposition (Angel-Croydon-S.-Hernandez Torres. ’19+)

For every ε,R > 0, it follows that

(i) lim
λ→∞

lim sup
δ→0

P

(
δ3µU

(
BU
(
0, δ−βR

))
> λ

)
= 0,

(ii) lim
η→0

lim sup
δ→0

P

(
inf

x∈BU
(
0,δ−βR

) δ3µU(BU(x , δ−βε)) < η

)
= 0,

(iii) lim
η→0

lim sup
δ→0

P

(
inf

(x ,y)∈A
δβdU (x , y) < η

)
= 0,

where A =
{

(x , y)
∣∣∣ x , y ∈ BU

(
0, δ−βR

)
, δ|x − y | > ε

}
.
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Some words about the proof

Uniqueness follows from the following observation.

I Let Un be the UST on 2−nZ3.

I Fix r ≥ 1. Take ε > 0 with 2−n � ε.

I Let {xi}i≥1 ⊂ 2−nZ3 ∩ B(r) be a “ε-net” of B(r), i.e.,
{xi} ⊂ 2−nZ3 ∩ B(r) is a finite set of points with
B(r) ⊂

⋃
i B(xi , ε) and |xi − xj | � ε for every i 6= j .

.
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Some words about the proof

r

Black points stand for a ε-net {xi}i≥1.
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Some words about the proof

r

The subtree U εn is drawn by solid curves.
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Some words about the proof

r

The full tree Un ∩ B(r) is well approximated by U εn ∩ B(r).
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Some words about the proof

Uniqueness follows from the following observation.

I Let Un be the UST on 2−nZ3.
I Fix r ≥ 1. Take ε > 0 with 2−n � ε.
I Let {xi}i≥1 ⊂ 2−nZ3 ∩ B(r) be a “ε-net” of B(r), i.e.,
{xi} ⊂ 2−nZ3 ∩ B(r) is a finite set of points with
B(r) ⊂

⋃
i B(xi , ε) and |xi − xj | � ε for every i 6= j .

I Let γn(x) be the unique path in Un starting from x to ∞.
I Let U εn be the subtree of Un spanned by {xi}, i.e.,

U εn =
⋃
i

γn(xi ).

I Metric structure of Un ∩ B(r) is similar to that of U εn ∩ B(r)
when ε is small.
.

−→ The problem boils down to the convergence of U εn as
n→∞.
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Some words about the proof

x1

γn(x1)

γn(x1)
d
= (infinite LERW starting from x1).
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Some words about the proof

I Let γ = LE
(
S [0,∞)

)
be the infinite LERW on Z3 starting

from the origin.

I Let ηn(t) = 2−nγ(2βnt), t ≥ 0 be the rescaled infinite LERW.

The convergence of the infinite LERW in the natural
parametrization is proved as follows.

Theorem (Li-S. ’18)

As n→∞, ηn converges weakly to a random continuous curve
w.r.t. the uniform convergence topology.

.
−→ Convergence of the rescaled γn(x1) is OK!
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Some words about the proof

x1

x2

(The second branch) = LE(Rx2),
where Rx2 is the SRW starting from x2 until it hits γn(x1).

20 / 23



Some words about the proof

I Let γ = LE
(
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be the infinite LERW on Z3.
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parametrization is proved as follows.

Theorem (Li-S. ’18)

As n→∞, ηn converges weakly to a random continuous curve
w.r.t. the uniform convergence topology.

−→ Convergence of the rescaled γn(x1) is OK!

I (Angel-Croydon-S.-Hernandez Torres. ’19+)
Proved the convergence in the natural parametrization for
LERW in the complement of LERW’s.
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Open Problem

What is the scaling limit of 3D UST?

Can we give a “nice” description of it?
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Thank you for your attention!
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