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What are persistence diagrams?

data (finite point configuration) persistence diagram
R4 A o . . R2
L4 ° o,I
o ° o ° . ’
’
o ° e o © ,’
© o ’
(¥] * I,
° ° . ° v

persistent /

o ° homology e
of a filtered g’ >

complex

K. Suzaki (Kumamoto University) limit theorem for PDs built over MPPs 2/22



What are persistence diagrams?
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Figure: Cech complex built over data
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Application to characterizing atomic structures
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Figure:
1st persistence diagrams for SiO2

(left: crystal, middle: glass, right: liquid)

Hiraoka Laboratory,
https://sites.google.com/view/hiraoka-lab-en/research /applied-
research /tda-on-amorphous-structures?authuser=0
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Law of large numbers for persistence diagrams

Theorem (Hiraoka, Shirai, and Trinh (2018))

® : stationary point process on R having all finite moment.
&q,1 : persistence diagram of “k-filtered complex”
built over random data ® N [—L/2, L/2)4

(&4, can be regarded as a point process on R?)
Then

EE[gq,L] = v, as L — oo.

Furthermore if ® is ergodic, then

1 v I
Eﬁq’L — Vg as — 00 a.s.
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|
Today's talk

input data — filtered complex — persistence diagram |

Input data ~» marked point process LLN
r-filtered complex ~» that of MPP = 5
[-L/2,L/2)¢ ~» convex set or FLs
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K-filtered complex built over marked point set

S:set, F(S)={ACS :0<#A < oo},

M : locally compact, 2nd countable Hausdorff space,

Kk : F(R% x M) — [0, co) satisfying:

(K1) k(A) < k(B)if A C B.

(K2) & is invariant under the translations on R9, i.e.,
k(T,A) = k(A) for any a € R% and A € F(R? x M),
where T, : (x,m) — (x + a, m).

(K3) There exists an increasing function p : [0, 00) — [0, c0)
such that |z — y| < p(k({(x,m), (y,n)})) for all
(z,m), (y,n) € R x M.
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|
K-filtered complex built over marked point set

: REX M D (z,m) = x € RY,
E F(R? x M) is a simple marked point set
E for any = € RY, #EN7{xz}) =0o0r1.

2 = n(E),

e [1]2 =l

I]

= {(m07 m0)7 (mla ml)a ooy (mqv mq)}
= {xo,x1,...,24} C R* & {mg,m1,...,my;} CM
finite point data & marks

[ ok

12

7 induces the bijection

F(E) 36— o € F(B).
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K-filtered complex built over marked point set

Given a simple marked point set =, we define a filtration
K(E) = {K(Eat)}tzo
of simplicial complexes from = by

K(E,t) = {0 C 2 : r(d) < t}.

o k(&) = the birth time of a simplex o in the filtration K(&).
o (K3) ~ o € K(8,t) = diamo < p(t)

We call K(Z) a -filtered complex built over Z.
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Examples of k-filtered complex

(i) M = [0, R] (the set of radii < R),

w(@) = inf max {le—w| - r}*

k(@) <t & ()| Bl@;t+r)#£0

(z,r)Ec

%30~ P- O
. N

Figure: Cech complex of balls with various sizes
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Examples of k-filtered complex (cont.)

(i) M = {¢t,t", e* — 1,log(1 + t),..., etc. }
(a finite family of continuous strictly increasing functions),

k(o = inf max r (|l —w
@ = nf max iz w))

k(E) <t < (1 Blz;r(t) #0

(zr(-))€a

Figure: Cech complex of balls with various growths
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Examples of k-filtered complex (cont.)

(iii)” M = {ball, solid convex polytope, solid ellipsoid, ..., etc. }
Similarly, we can define a k such that the corresponding
k-filtered complex is

[+]

o

Figure: Cech complex of sets with various shapes
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|
Persistent homology

K(Z) = {K(é,t)}tzo : k-filtered complex built over Z,

Hq(K(é, t)) = ¢ th homology module of K(Z,t) on a field F
connected components q =0
rings qgq=1

cavities q=2

o Forr < s, K(8,r) — K(&, s) induces the linear map

22 Hy(K(2,7)) — Hy(K(Z,s)).

r
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Persistence diagram

® Hq(K(é)) = ({Hq(K(éa t))}tZOa {Lf«}rgs)
. g-th persistent homology (module)

H,(K(8)) ~ @I(bi’di)’
where I(b;,d;) = ({U}s>0, {2 }r<s)

F b; S t < di?
U, = :
{0} otherwise,

and f? =idyp for b; < r < s < d;.

e I(b;,d;) means a “g-dimensional hole” appears at t = b;,
persists b; < t < d; and disappears at t = d;.
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|
Persistence diagrams as counting measures

o D,(K(E)) = {(bs,ds) € A : i=1,2,...,n4}
: g-th persistence diagram of K(Z),
where
A ={(xz,y) € [0,00] X [0,00] : 0 <z <y < oo}

We deal with D,(K(Z)) as the counting measure

EQ(K(E)) = Z 6(biydi)'

(bi,di)€Dq(K(E))
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|
Marked point process

® is a marked point process on R¢ with marks in M
% & is a point process on R% x M such that for any = € R,
®(r{xz}) =0or1as.
o & =3 dx,m)
{(X;, M;)} are R¢ x M-valued random variables.
@ For a bounded Borel A C R¢,
{(X;, M;)} N (A x M) is a (random) simple marked point set.
e & =) i, :the ground process of P

° ® has all finite moment
& for all compact A C R% and p > 1, E[®(A)P] < oo
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|
Translations on Conf(R? x M)

For a € R4,
T, : R*x M3 (x,m) — (x +a,m) ER* x M
U
(To)« : Conf(R% X M) 3 p+ poT, ' € Conf(R* x M).
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|
Stationarity and Ergodicity of ®
® is stationary € Po (T,).®) ' = Po® ! for any a € R?

I € B(Conf(R? x M)),
P is ergodic P o ® Y(IA(T,).I) = 0 for any a € R?
= Po®(I) € {0,1}
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|
Convex averaging net

(N, <) :linearly ordered set
A = {A, }nen :a family of bounded Borel sets in R¢
is a convex averaging net if
(i) A, is convex for each n € N,
(i) A, C A,, for n < m, and
(iii) sup r(A,) = oo,
neN
where 7(A) = sup{r > 0 : A contains a ball of radius r}.

We put N
.4, = Eq(K(®|a,xm)),

ie.,
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Main result
Theorem

Let ® be a stationary marked point process and suppose its ground
process ® has all finite moments. Then for any nonnegative integer
g, there exists a Radon measure v4 on A such that for any convex
averaging net A = { Ay, }nen in R,

1

mE[éq,An] Z Vg as m — oo,

where £ is the d-dimensional Lebesgue measure. Furthermore if ® is
ergodic, then
1

v
— — U, as mn — oo a.s.
Z(An)éq’An q
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N
Sketch of the Proof

@ We extend ideas in Hiraoka, Shirai, and Trinh (2018) to marked

point processes.

s (R(EY) — the rank of
By (K(E)) = LS Hq(K(é,fr)) — Hq(K(é, s))

T

= £ (K(E))([0,7) X (s,00])

is called the gth (r, s)-persistent Betti number of K(ﬁ).
The LLN for ﬁ;’s + general theory of Radon measures

= Main theorem is proved.
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Let K' = {K}}i>0 and K2 = {KZ2}i>¢ be filtrations with
K! C K2 fort > 0. Then,

187°(KY) — 80°(K?)|
< Z #K.?,j \ K.:,j + #{o € Ksl,j \ K:,j : t<(72) <r},

Jj=q,q+1

where K; ; is the set of j-simplices in K; and t((f) is the birth time
ofc inK! i=1,2.
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/Bq,An = BT’S(K(‘MA xM))

Theorem

2 |

Let ® be a stationary marked point process and suppose its ground
process ® has all finite moments. Then, forany 0 < r < s < o0
and nonnegative integer g, there exists a nonnegative number BZ’S

such that for any convex averaging net A = {A, }henr in R,

[Bq,An] — B;’S as m — o0o.

f(fln)

Furthermore, if ® is ergodic, then

TS Ar,s
By a, — Bq as 7N — o0 a.s.

£(An)
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