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X = (Pg, Xt,¢) : a symmetric Markov process on E.
Suppose X is almost surely killed, i.e.,

P:(( <o0)=1, Vx € E.

e A probability measure p € P(E) is said to be a
quasi-stationary distribution (QSD) if for all B € B(FE)

P,.(X: € B)

u(B):P“(Xt€B|t<C):m.
I

Here P, = [, Podu(x).
e Our objective is to show that if X is irreducible, strong

(resolvent) Feller and has a tightness property defined below,
the existence and uniqueness of QSDs holds.



Setting

o FE : locally compact separable metric space

e m : positive Radon measure with supp[m| = E

e (£,D(€)) : regular Dirichlet form on L2(E;m)

o X = (9, X, P,,¢) : m-symmetric Markov process on
E generated by (£, D(£))

(Ptfs9)m = (f,Ptg)m, [,g € Bp(E).
Here {p:},~ is the semigroup of X,

pif(x) = Ex[f(Xt)], f € Bp(E)-
° {Rg}g>, : the resolvent of X,

Rgf(x) = /000 e_ﬂtptf(a:)dt, f € By(E).



X is said to be in Class (T)

(i) (Irreducibility) If a Borel set A is pi-invariant,
i.e., [, ptlacdm = 0 for any ¢t > 0, then
m(A) =0 or m(A°) = 0.
(ii) (Strong Resolvent Feller Property)
Ry(By(E)) C Co(E), B> 0.
(iii) (Tightness) For any € > 0, there exists a
compact set K C F s.t.
sup R11ke(x) < e.
zeE
e If X is conservative, { Ry (x, ®)}.ck is tight in Prohorov’s
sense.

e R11 € Co(FE) (explosive) = (iii). Here 1 = 1g. Indeed

sup Ril1ge(x) = sup Rilke(z) < sup Ry11(x).
xcEF xzeKe



e If Khasminskii’s test confirms the explosion of a symmetric
diffusion process X, then X is considered to have the
tightness property.

o If m(FE) < oo and ||p¢||1,00 = ¢+ < oo, then (iii) holds.
For example, an absorbing BM on a domain with finite
volume.

Fact 1 (One-dimensional diffusion process)

A one-dimensional minimal diffusion has the tightness
property if and only if there exists no natural boundary.

e Fact 1 follows from asymptotic properties of 1-resolvent
near boundary (e.g. Itd, K.: Essentials of stochastic
processes, American Mathematical Society).

We give some properties of symmetric Markov processes in
Class (T).



Theorem

If X is in Class (T), then (D(€),&1(=E+ (, )m)) is
compactly embedded in L?(E; m)(<= p: is a compact
operator on L2(E;m)).

Theorem

If X in Class(T) is not conservative, it explodes very fast. In
fact, the life time ¢ is exponentially integrable:

sup Ez[e7¢] < 0o <= v < Ao,
zeE

Ao = inf{E(u,u) | u € D(E), ||u|l2 =1} = E(¢po, o) > O.

Theorem

If X is in Class (T), every L2-eigenfunction of p; has a
bounded continuous version.



e The boundedness follows from the next inequality: for a
large n
|p(x)| < sup |¢(x)| - sup Ey [e*ﬁﬂ < oo.
z€EKn xeFE

Here ¢ € C({K,}) be the eigenfunction corresponding to
the eigenvalue X\ and 7xc = inf{t > 0| X; € K_}. More
precisely, let Axc be the principal eigenvalue on K° with
Dirichlet boundary condition. By Tightness (iii)

Ake T oo, n 7 oo.
Noting that

sup E; [e77KR] < 00 <= v < Aks.
x€EF

we have sup,c g E; [e)‘TK%} < oo by taking n so large that
)\K% > A

e The continuity of eigenfunctions follows from the strong
Feller property.



e If X in Class (T) is not conservative, then

P,(¢ < o0) =1, Vax € E (almost surely killed).

In the sequel, we assume X is not conservative.

Theorem 1
If X in Class (T) is not conservative, it has a unique QSD
with the following expression:

fB ¢0dm
J& Podm ’

Here ¢y is the principal eigenfunction (¢¢ > 0):
Ao = inf{€(u,u) [ u € D(E), ||ullz =1}
= E(¢o, Po) > 0.

v?(B) = B € B(E).

e For the definition of v%?, it is necessary that
¢o € L*(E, m). This fact is not trivial because m(E) can
be infinite.



Key Lemma

If X is in Class (T), then the normalized principal
eigenfunction ¢ belongs to L(E, m).

(Sketch of Proof). Fix a compact set K with m(K) > 0.
Define

t
p{{f(aj) =E, [e— Jo 1K(Xs)d3f(Xt)} ,
o0
P f = i f, RN = /0 A
o0 o0
<€)‘°tpt¢0 = ¢o, / e ippodt = / podt = oo>
0 0

Note that

po(x) = R K (1x¢o)(z), YV € E.



—(A+ X0 —1k)bo = —(A + Xo)Po + 1k po = 1k Po-
R (1gpo) = R (—(A+ Ao — 1k) o) = do.

By the symmetry of R*>K with respect to m

/¢Odm:/ R)‘O’K(qubO)dm:/ 1 poR K 1dm
E E E

< ||R"0’K1||oo/ podm < oo
K

if || R 1|00 < oco.

e We can prove ||R*K1||,, < oo using LP-independence of
the growth bound of pX:

1 1
s K — Tim — K —
th—g:o P log ||pt ”oo,oo th—fglo P log “pt ”2,2 < =Xo

(Chen-Kim-Kuwae)



Let us prove the main theorem:

Theorem 1
If X in Class (T) is not conservative, then
d
V¢O(B) - m, B € B(E)

Jg podm
is a unique QSD.

Let X% = (Q, X4, Pjgo) be the transformed process by

)\Ot d)O( t)

PP =LY Py, LY =& T Slice)

(ground state transform).

e X% s qbgm—symmetric, conservative, irreducible process.
Its semigroup is expressed as

P £(g) = eot 1 T
P (@) = (o) (@)

< pif(x) = exp(—Xot)do(x)p{° (f/do)(x).




Existence of QSD

p®o fB $podm
(B) := [ bodm

is a QSD, i.e., P s, (X; € B|t < ¢) = v (B).

, B € B(E)

P4 (Xt S B)

%o . —
v? : QED <= P, (Xt € B|t < () = .
v ) P o0 (X € E)

By the definition of v®°

g Pe(X: € B)go(z)dm
fE ¢o(x)dm

/ P, (X: € B)¢po(x)dm = / pilp(x)do(x)dm
E E

1
= e_Aot/ pfo < B> q’)ﬁdm.
E ol

PLso (Xt € B) =




By the symmetry of p;° with respect to qb(z)m, the RHS.
equals

1
e_>‘°t/ <¢B> ¢°1 ¢gdm—e )‘Ot/ do dm,
0

and thus o—ot fB b0 dm

fE do(x)dm

Pyd’O (Xt e B) =
Hence
e [ godm/ [, po dm
et [ podm/ [ o dm
= v?(B),

P oo (X € Bt < () =

which implies that v%° is a QSD.



Uniquness of QSD

Suppose p is a QSD. By definition of QSD
P, (X; € B)
wB) = S-S
© (Xt € E)
For compact sets K, F C E
P,(X: € K P,(X: € K
IJ'(K): H'( te )S H( te ).
P,(X:€E) ~ Pu(X:€F)

VB € B(E).

Since

P, (X € K) = pilk(x) = e_kot¢0($)Pt0(1K/¢0)(-’E),

e ot [ popl® (1k/¢)dp

e=ot [ ¢0pt °(1r/¢)dp
_ Jp Pop 0(1K/¢>)dﬂ
fE bop; 0(1F/¢)dﬂ

(RHS) =




Since

< oo,
1x/¢o € L™(E; ¢p2m). Similarly, 15/¢po € L2 (E; p2m).

) o (1K _ [ 1k _
b (2) - | i i

by applying Fukushima’s ergodic theorem to X %0,

Theorem (Fukushima's ergodic theorem)

Let X be an irreducible m-symmetric Markov process with
transition probability density, p:(x, dy) = pi(x, y)m(dy).
Assume that m(E) < oo. Then for f € L°°(E;m)

Jg fdm

Ve € FE.
m(E) ~

Jim puf ) =



e X %0 satisfies the conditions in Theorem above.

By the bounded convergence theorem

Jim / ¢opt°< )du / odps / godm.

p(K) < 11m inf fE ¢0p "(Lx/)dn
t=>oo [ pop?° (1r/¢)du

. fK Podm

B Jr Podm

Hence p(K) < v?(K) and so

L v?(K), F1 E.

u(B) < v?(B), VB € B(E).

Noting that u(B) = 1 — u(B¢) > 1 — v%9(B°) = v?°(B),
we have
o= v®o.



o If u € P(FE) satisfies
tlif& P.(X: € B|t<({) = u(B), Ve € E, VA € B(E),
p is said to be Yaglom limit.

e p; is said to be intrinsically ultracontractive (abreviated as
V), if b0
1P’ 11,00 < C(t) < 00, t>0,

where || - ||1,00 is the operator norm from L' (E; $2m) to
Lo (E; ¢p3m).

Theorem 2

X is in Class (T). In addition, if its semigroup p; is
intrinsically ultracontractive, then for any initial distribution
v EP(E)

lim P,(X; € B|t < ¢) =v?(B), VB € B(E),
t—o0

that is, %0 is the Yaglom limit.



Example 1

A one-dimentional diffusion process without natural
boundary has a unque QSD.

e A sufficient condition for the IU is given in terms of speed
measure m and scale function s (Tomisaki).

Example 2

Let (P, X;) be the symmetric a-stable process on R<. If an
open set D C R satisfies

lim m(D N B(x,1)) =0 (thin at infinity),

|| —o00

then the absorbing symmetric a-stable process on D is in
Class (T), consequently, QSD is unique. Here m is the
Lebesgue measure and B(x, 1) is the open ball with center
x and radius 1.



e For any bounded open set D, the semigroup of the
absorbing symmetric a-stable process on D is IU (T.
Kulczycki, 1998). As a result,

: D — 5,90
Jim PZ (X¢ € B|t < p) = v*°(B).

For absorbing Brownian motion, this result is due to R.
Pinsky. In this case, the smoothness of the boundary 9D is
necessary.

e There exists an example of an open set with infinite
volume on which the absorbing symmetric a-stable process
satisfies the IU (M. Kwasnicki, 2009).



Example 3

Let X be the symmetric a-stable process on R? and V a
locally bounded, non-negative function on R? satisfying
V()

|z|—oo log |x|

Define .
P;/ = e~ Jo V(Xe)ds | P, on JF;.

Then PY is in Class (T) and its semigroup is intrinsically
ultracontractive (Kaleta, K., Kulczycki, T.). Let ¢¢ be the
principal eigenfunction of (—A)®/2 4 V. Then

E, [exp(— fg’ V(Xs)ds); Xt € A]

E,, [exp(— [y V(X,)ds)|
— v?(A), t— oco.

PY(X € Alt<() =



