Existence and Uniqueness of Quasi-Stationary Distributions for Symmetric Markov Processes with Tightness Property

Masayoshi Takeda

Kansai University

2019/9/2

Objective

 $X = (P_x, X_t, \zeta)$: a symmetric Markov process on E. Suppose X is almost surely killed, i.e.,

$$\mathbf{P}_x(\zeta < \infty) = 1, \ \forall x \in E.$$

• A probability measure $\mu \in \mathcal{P}(E)$ is said to be a quasi-stationary distribution (QSD) if for all $B \in \mathcal{B}(E)$

$$\mu(B) = \mathrm{P}_{\mu}(X_t \in B \,|\, t < \zeta) = rac{\mathrm{P}_{\mu}(X_t \in B)}{\mathrm{P}_{\mu}(X_t \in E)}$$

Here $\mathbf{P}_{\mu} = \int_{E} \mathbf{P}_{x} d\mu(x)$.

• Our objective is to show that if X is irreducible, strong (resolvent) Feller and has a tightness property defined below, the existence and uniqueness of QSDs holds.

Setting

Setting

- E : locally compact separable metric space
- m : positive Radon measure with supp[m] = E
- $(\mathcal{E},\mathcal{D}(\mathcal{E}))$: regular Dirichlet form on $L^2(E;m)$
- $X = (\Omega, X_t, P_x, \zeta)$: *m*-symmetric Markov process on *E* generated by $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$

$$(p_tf,g)_m=(f,p_tg)_m, \ \ f,g\in \mathcal{B}_b(E).$$

Here $\{p_t\}_{t>0}$ is the semigroup of X,

$$p_t f(x) = \mathbf{E}_x[f(X_t)], \quad f \in \mathcal{B}_b(E).$$

• $\{R_eta\}_{eta\geq 0}$: the resolvent of X, $R_eta f(x) = \int_0^\infty e^{-eta t} p_t f(x) dt, \quad f\in \mathcal{B}_b(E).$

X is said to be in Class (T) if

- (i) (Irreducibility) If a Borel set A is p_t -invariant, i.e., $\int_A p_t \mathbf{1}_{A^c} dm = 0$ for any t > 0, then m(A) = 0 or $m(A^c) = 0$.
- (ii) (Strong Resolvent Feller Property) $R_{\beta}(\mathcal{B}_b(E)) \subset C_b(E), \ \beta > 0.$
- (iii) (Tightness) For any $\epsilon > 0$, there exists a compact set $K \subset E$ s.t.

$$\sup_{x\in E} R_1 1_{K^c}(x) \leq \epsilon.$$

- If X is conservative, $\{R_1(x, \bullet)\}_{x \in E}$ is tight in Prohorov's sense.
- $R_1 1 \in C_{\infty}(E)$ (explosive) \Longrightarrow (iii). Here $1 = 1_E$. Indeed

$$\sup_{x \in E} R_1 \mathbb{1}_{K^c}(x) = \sup_{x \in K^c} R_1 \mathbb{1}_{K^c}(x) \le \sup_{x \in K^c} R_1 \mathbb{1}(x).$$

• If Khasminskii's test confirms the explosion of a symmetric diffusion process X, then X is considered to have the tightness property.

• If $m(E) < \infty$ and $||p_t||_{1,\infty} = c_t < \infty$, then (iii) holds. For example, an absorbing BM on a domain with finite volume.

Fact 1 (One-dimensional diffusion process)

A one-dimensional minimal diffusion has the tightness property if and only if there exists no natural boundary.

• Fact 1 follows from asymptotic properties of 1-resolvent near boundary (e.g. Itô, K.: Essentials of stochastic processes, American Mathematical Society).

We give some properties of symmetric Markov processes in Class (T).

Theorem

If X is in Class (T), then $(\mathcal{D}(\mathcal{E}), \mathcal{E}_1(=\mathcal{E}+(,)_m))$ is compactly embedded in $L^2(E;m)$ ($\iff p_t$ is a compact operator on $L^2(E;m)$).

Theorem

If X in Class(T) is not conservative, it explodes very fast. In fact, the life time ζ is exponentially integrable:

$$\sup_{x\in E} \mathrm{E}_x[e^{\gamma\zeta}] < \infty \Longleftrightarrow \gamma < \lambda_0,$$

 $\lambda_0=\inf\{\mathcal{E}(u,u)\mid u\in\mathcal{D}(\mathcal{E}),\; \|u\|_2=1\}=\mathcal{E}(\phi_0,\phi_0)>0.$

Theorem

If X is in Class (T), every L^2 -eigenfunction of p_t has a bounded continuous version.

• The boundedness follows from the next inequality: for a large n

$$|\phi(x)| \leq \sup_{x \in K_n} |\phi(x)| \cdot \sup_{x \in E} \mathrm{E}_x \left[e^{\lambda au_{K_n^c}}
ight] < \infty.$$

Here $\phi \in C(\{K_n\})$ be the eigenfunction corresponding to the eigenvalue λ and $\tau_{K_n^c} = \inf\{t > 0 \mid X_t \notin K_n^c\}$. More precisely, let $\lambda_{K_n^c}$ be the principal eigenvalue on K_n^c with Dirichlet boundary condition. By Tightness (iii)

$$\lambda_{K_n^c}\uparrow\infty,\quad n\uparrow\infty.$$

Noting that

$$\sup_{x\in E} \operatorname{E}_x \left[e^{\gamma\tau_{K_n^c}} \right] < \infty \Longleftrightarrow \gamma < \lambda_{K_n^c}.$$

we have $\sup_{x\in E} \operatorname{E}_x \left[e^{\lambda\tau_{K_n^c}} \right] < \infty$ by taking n so large that $\lambda_{K_n^c} > \lambda.$

• The continuity of eigenfunctions follows from the strong Feller property.

• If X in Class (T) is not conservative, then

 $P_x(\zeta < \infty) = 1, \ \forall x \in E \text{ (almost surely killed).}$

In the sequel, we assume X is not conservative.

Theorem 1

If X in Class (T) is not conservative, it has a unique QSD with the following expression:

$$u^{\phi_0}(B)=rac{\int_B\phi_0dm}{\int_E\phi_0dm}, \ \ B\in {\mathfrak B}(E).$$

Here ϕ_0 is the principal eigenfunction ($\phi_0 > 0$):

$$egin{aligned} \lambda_0 &= \inf \{ \mathcal{E}(u,u) \mid u \in \mathcal{D}(\mathcal{E}), \; \|u\|_2 = 1 \} \ &= \mathcal{E}(\phi_0,\phi_0) > 0. \end{aligned}$$

• For the definition of ν^{ϕ_0} , it is necessary that $\phi_0 \in L^1(E,m)$. This fact is not trivial because m(E) can be infinite.

Key Lemma

If X is in Class (T), then the normalized principal eigenfunction ϕ_0 belongs to $L^1(E, m)$.

(Sketch of Proof). Fix a compact set K with m(K) > 0. Define

$$p_t^K f(x) = \mathrm{E}_x \left[e^{-\int_0^t \mathbf{1}_K(X_s) ds} f(X_t)
ight],
onumber \ p_t^{\lambda_0,K} f = e^{\lambda_0 t} p_t^K f, \ R^{\lambda_0,K} f = \int_0^\infty p_t^{\lambda_0,K} f.$$
 $e^{\lambda_0 t} p_t \phi_0 = \phi_0, \ \int_0^\infty e^{\lambda_0 t} p_t \phi_0 dt = \int_0^\infty \phi_0 dt = \infty.$

Note that

$$\phi_0(x)=R^{\lambda_0,K}(1_K\phi_0)(x), \; orall x\in E.$$

(=) (

$$-(A + \lambda_0 - 1_K)\phi_0 = -(A + \lambda_0)\phi_0 + 1_K\phi_0 = 1_K\phi_0.$$

 $R^{\lambda_0,K}(1_K\phi_0) = R^{\lambda_0,K}(-(A + \lambda_0 - 1_K)\phi_0) = \phi_0.$
By the symmetry of $R^{\lambda_0,K}$ with respect to m

$$egin{aligned} &\int_E \phi_0 dm = \int_E R^{\lambda_0,K} (1_K \phi_0) dm = \int_E 1_K \phi_0 R^{\lambda_0,K} 1 dm \ &\leq \|R^{\lambda_0,K} 1\|_\infty \int_K \phi_0 dm < \infty \end{aligned}$$

$$\text{ if } \|R^{\lambda_0,K}1\|_\infty <\infty.$$

• We can prove $\|R^{\lambda_0,K}1\|_\infty<\infty$ using $L^p\text{-independence of the growth bound of }p_t^K$:

$$\lim_{t \to \infty} rac{1}{t} \log \|p_t^K\|_{\infty,\infty} = \lim_{t \to \infty} rac{1}{t} \log \|p_t^K\|_{2,2} < -\lambda_0$$
(Chen-Kim-Kuwae)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let us prove the main theorem:

Theorem 1

If X in Class (T) is not conservative, then

$$u^{\phi_0}(B) = rac{\int_B \phi_0 dm}{\int_E \phi_0 dm}, \ \ B \in \mathfrak{B}(E)$$

is a unique QSD.

Let $X^{\phi_0} = (\Omega, X_t, \mathbf{P}_x^{\phi_0})$ be the transformed process by $\mathbf{P}_x^{\phi_0} = L_t^{\phi_0} \cdot \mathbf{P}_x, \quad L_t^{\phi_0} = e^{\lambda_0 t} \frac{\phi_0(X_t)}{\phi_0(X_0)} \mathbf{1}_{\{t < \zeta\}}$

(ground state transform).

• X^{ϕ_0} is $\phi_0^2 m$ -symmetric, conservative, irreducible process. Its semigroup is expressed as

$$p_t^{\phi_0}f(x) = e^{\lambda_0 t}rac{1}{\phi_0(x)}p_t(\phi_0f)(x)$$
 $\iff p_tf(x) = \exp(-\lambda_0 t)\phi_0(x)p_t^{\phi_0}(f/\phi_0)(x).$

Existence of QSD

Claim 1

$$u^{\phi_0}(B):=rac{\int_B\phi_0dm}{\int_E\phi_0dm}, \ \ B\in {\mathfrak B}(E)$$

is a QSD, i.e., $\mathrm{P}_{\nu^{\phi_0}}(X_t\in B\,|\,t<\zeta)=\nu^{\phi_0}(B).$

$$u^{\phi_0}: \operatorname{QED} \Longleftrightarrow \operatorname{P}_{\nu^{\phi_0}}(X_t \in B | t < \zeta) = rac{\operatorname{P}_{\nu^{\phi_0}}(X_t \in B)}{\operatorname{P}_{\nu^{\phi_0}}(X_t \in E)}.$$

By the definition of u^{ϕ_0}

$$egin{aligned} \mathrm{P}_{
u^{\phi_0}}(X_t\in B) &= rac{\int_E \mathrm{P}_x(X_t\in B)\phi_0(x)dm}{\int_E \phi_0(x)dm}.\ &\int_E \mathrm{P}_x(X_t\in B)\phi_0(x)dm &= \int_E p_t \mathrm{1}_B(x)\phi_0(x)dm\ &= e^{-\lambda_0 t}\int_E p_t^{\phi_0}\left(rac{1_B}{\phi_0}
ight)\phi_0^2dm. \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

By the symmetry of $p_t^{\phi_0}$ with respect to $\phi_0^2 m$, the RHS. equals

$$e^{-\lambda_0 t}\int_E\left(rac{1_B}{\phi_0}
ight)p_t^{\phi_0}1\cdot\phi_0^2dm=e^{-\lambda_0 t}\int_B\phi_0\,dm,$$

. . .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

and thus

$$\mathrm{P}_{
u^{\phi_0}}(X_t\in B)=rac{e^{-\lambda_0 t}\int_B\phi_0\,dm}{\int_E\phi_0(x)dm}.$$

Hence

$$egin{aligned} \mathrm{P}_{
u^{\phi_0}}(X_t\in B\,|\,t<\zeta) &= rac{e^{-\lambda_0 t}\int_B\phi_0\,dm/\int_E\phi_0\,dm}{e^{-\lambda_0 t}\int_E\phi_0\,dm/\int_E\phi_0\,dm} \ &=
u^{\phi_0}(B), \end{aligned}$$

which implies that ν^{ϕ_0} is a QSD.

Uniquness of QSD

Suppose μ is a QSD. By definition of QSD

$$\mu(B) = rac{\mathrm{P}_{\mu}\left(X_t \in B
ight)}{\mathrm{P}_{\mu}\left(X_t \in E
ight)}, \ orall B \in \mathcal{B}(E).$$

For compact sets $K, F \subset E$

$$\mu(K) = \frac{\mathrm{P}_{\mu}\left(X_t \in K\right)}{\mathrm{P}_{\mu}\left(X_t \in E\right)} \leq \frac{\mathrm{P}_{\mu}\left(X_t \in K\right)}{\mathrm{P}_{\mu}\left(X_t \in F\right)}.$$

Since

$$\mathrm{P}_x \left(X_t \in K
ight) = p_t \mathbb{1}_K(x) = e^{-\lambda_0 t} \phi_0(x) p_t^{\phi_0}(\mathbb{1}_K / \phi_0)(x),$$

$$(RHS) = rac{e^{-\lambda_0 t}\int_E \phi_0 p_t^{\phi_0}(1_K/\phi)d\mu}{e^{-\lambda_0 t}\int_E \phi_0 p_t^{\phi_0}(1_F/\phi)d\mu} \ = rac{\int_E \phi_0 p_t^{\phi_0}(1_K/\phi)d\mu}{\int_E \phi_0 p_t^{\phi_0}(1_F/\phi)d\mu}.$$

Since

$$\sup_{x\in E}\frac{1_K}{\phi_0}(x)=\frac{1}{\inf_{x\in K}\phi_0(x)}<\infty,$$

 $1_K/\phi_0\in L^\infty(E;\phi_0^2m).$ Similarly, $1_F/\phi_0\in L^\infty(E;\phi_0^2m).$

$$\lim_{t \to \infty} p_t^{\phi_0} \left(\frac{1_K}{\phi_0} \right) (x) = \int_E \frac{1_K}{\phi_0} \phi_0^2 dm = \int_K \phi_0 dm$$

by applying Fukushima's ergodic theorem to X^{ϕ_0} .

Theorem (Fukushima's ergodic theorem)

Let X be an irreducible *m*-symmetric Markov process with transition probability density, $p_t(x, dy) = p_t(x, y)m(dy)$. Assume that $m(E) < \infty$. Then for $f \in L^{\infty}(E;m)$

$$\lim_{t o\infty} p_t f(x) = rac{\int_E f dm}{m(E)}, \;\; orall x \in E.$$

• X^{ϕ_0} satisfies the conditions in Theorem above.

By the bounded convergence theorem

$$egin{aligned} \lim_{t o\infty} \int_E \phi_0 p_t^{\phi_0}\left(rac{1_K}{\phi_0}
ight) d\mu &= \int_E \phi_0 d\mu \int_K \phi_0 dm. \ \mu(K) &\leq \liminf_{t o\infty} rac{\int_E \phi_0 p_t^{\phi_0}(1_K/\phi) d\mu}{\int_E \phi_0 p_t^{\phi_0}(1_F/\phi) d\mu} \ &= rac{\int_K \phi_0 dm}{\int_F \phi_0 dm} \downarrow
u^{\phi_0}(K), \ F\uparrow E. \end{aligned}$$

Hence $\mu(K) \leq
u^{\phi_0}(K)$ and so

$$\mu(B) \leq
u^{\phi_0}(B), \ \forall B \in \mathfrak{B}(E).$$

Noting that $\mu(B) = 1 - \mu(B^c) \ge 1 - \nu^{\phi_0}(B^c) = \nu^{\phi_0}(B)$, we have

$$\mu =
u^{\phi_0}$$

• If $\mu \in \mathcal{P}(E)$ satisfies

 $\lim_{t\to\infty} \mathbf{P}_x(X_t\in B\,|\,t<\zeta)=\mu(B),\;\forall x\in E,\;\forall A\in\mathcal{B}(E),$

 μ is said to be Yaglom limit.

• p_t is said to be intrinsically ultracontractive (abreviated as IU), if $\|p^{\phi_0}\|_{L^\infty} \leq C(t) \leq \infty$ t > 0

 $\|p_t^{\phi_0}\|_{1,\infty} \leq C(t) < \infty, \ t > 0,$

where $\|\cdot\|_{1,\infty}$ is the operator norm from $L^1(E;\phi_0^2m)$ to $L^\infty(E;\phi_0^2m).$

Theorem 2

X is in Class (T). In addition, if its semigroup p_t is intrinsically ultracontractive, then for any initial distribution $\nu \in \mathcal{P}(E)$

$$\lim_{t\to\infty} \mathrm{P}_{\nu}(X_t\in B\,|\,t<\zeta)=\nu^{\phi_0}(B),\;\forall B\in\mathfrak{B}(E),$$

that is, ν^{ϕ_0} is the Yaglom limit.

Example 1

A one-dimentional diffusion process without natural boundary has a unque QSD.

• A sufficient condition for the IU is given in terms of speed measure m and scale function s (Tomisaki).

Example 2

Let (\mathbf{P}_x, X_t) be the symmetric α -stable process on \mathbb{R}^d . If an open set $D \subset \mathbb{R}^d$ satisfies

 $\lim_{|x| o\infty}m(D\cap B(x,1))=0 ~~(ext{thin at infinity}),$

then the absorbing symmetric α -stable process on D is in Class (T), consequently, QSD is unique. Here m is the Lebesgue measure and B(x, 1) is the open ball with center x and radius 1.

• For any bounded open set D, the semigroup of the absorbing symmetric α -stable process on D is IU (T. Kulczycki, 1998). As a result,

$$\lim_{t\to\infty} \mathrm{P}^D_x\left(X_t\in B\,|\,t<\tau_D\right)=\nu^{\phi_0}(B).$$

For absorbing Brownian motion, this result is due to R. Pinsky. In this case, the smoothness of the boundary ∂D is necessary.

• There exists an example of an open set with infinite volume on which the absorbing symmetric α -stable process satisfies the IU (M. Kwaśnicki, 2009).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example 3

Let X be the symmetric α -stable process on \mathbb{R}^d and V a locally bounded, non-negative function on \mathbb{R}^d satisfying

$$\lim_{|x| o \infty} rac{V(x)}{\log |x|} = \infty.$$

Define

$$\mathbf{P}^V_x = e^{-\int_0^t V(X_s) ds} \cdot \mathbf{P}_x \; \; ext{on} \; \mathcal{F}_t.$$

Then P_x^V is in Class (T) and its semigroup is intrinsically ultracontractive (Kaleta, K., Kulczycki, T.). Let ϕ_0 be the principal eigenfunction of $(-\Delta)^{\alpha/2} + V$. Then

$$\mathrm{P}^V_x(X_t \in A \,|\, t < \zeta) = rac{\mathrm{E}_x\left[\exp(-\int_0^t V(X_s)ds); X_t \in A
ight]}{\mathrm{E}_x\left[\exp(-\int_0^t V(X_s)ds)
ight]} \ \longrightarrow \
u^{\phi_0}(A), \ \ t o \infty.$$