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Motivation

In this talk, we would like to discuss compact

embeddings for symmetric Markov processes.

Let (E,F) be a Dirichlet form on L2(E;m) associated

with a m-symmetric Markov process X.

For a suitable measure µ, Stollmann-Voigt proved the

following inequality: for α > 0∫
u2dµ ≤ ∥Rαµ∥∞Eα(u, u), u ∈ F , (1)

where Rα is the α-resolvent of X and

Eα(u, u) = E(u, u) + α(u, u). Moreover, if X is

transient, (1) holds for α = 0 and u ∈ Fe.

Hence the embedding (F , E1) ↪→ L2(µ)

(or (Fe, E) ↪→ L2(µ) if X is transient) is continuous.
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Motivation

Takeda introduced following conditions:

(I) X is irreducible:

If any Borel set B satisfies Pt1Bu = 1BPtu

for all u ∈ L2(E;m) and t > 0, then

m(B) = 0 or m(Bc) = 0 holds.

(RSF) X has the resolvent strong Feller property:

Rα(Bb) ⊂ Cb for any α > 0.

(Tightness) X has a tightness property:

For any ε > 0, there exists a compact set

K(⊂ E) such that

∥R1(1Kcm)∥∞ < ε.

If X satisfies conditions (I), (RSF) and (Tightness), X is

called “class (T)”.
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Motivation

Theorem 1 (Takeda (’19))

Suppose that X is class (T).

(1) The Markov semigroup is compact on L2(E;m) and its

every eigenfunction has a bounded continuous version.

(2) The embedding (F , E1) ↪→ L2(E;m) is compact.

(3) If X is transient and µ ∈ S1
CK∞

(X), then the

embedding (Fe, E) ↪→ L2(µ) is compact.

(4) There exists a bounded ground state uniquely up to sign,

that is, the function ϕ0 which attains the infimum:

inf

{
E(u, u) : u ∈ F ,

∫
E
u2dm = 1

}
.

Moreover, ϕ0 can be taken to be strictly positive.
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Motivation

Remark 2

(1) In Theorem 1, (1) ⇐⇒ (2).

(2) The statement (3) plays very important role to prove the

large deviation for additive functionals.

(3) For (3), Chen-T. proved by another method that this

embedding is compact if X is pure jump symmetric

Markov process which satisfies a mild condition for jump

kernel without (I) and (RSF).
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Motivation

In proofs of compactness, we notice that Takeda does

not use (RSF) essentially.

He use (RSF) in proving that m belongs to the class of

Green-tight Kato measure in the sense of Chen (in

notation S1
CK∞

(X(1))).

(X(1) means the 1-subprocess of X).

We would like to clarify where these conditions are used,

and generalize these results.
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Setting

E : a locally compact separable metric space

m : a positive Random measure on E with full support.

X = (Px, Xt) : m-symmetric special standard process on E.

{Pt, t ≥ 0}: the semigroup of X.

(E,F) : the quasi-regular Dirichlet form generated by X:

F =

{
u ∈ L2(m) : lim

t↓0

1

t
((I − Pt)u, u)L2(m) < ∞

}
E(u, v) = lim

t↓0

1

t
((I − Pt)u, v)L2(m), u, v ∈ F .

(Fe, E) : the extended Dirichlet space of (E,F).

Rα : the α-resolvent of X.

S1(X) : the family of positive smooth measures in the strict

sense under the absolute continuity condition (AC).
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(AC), (SF), (RSF)

In this talk, we always assume that any measure belongs to

S1(X).

Let Pt(x, dy) be the transition function of X, that is,

Pt(x,B) = Px(Xt ∈ B).

In the sequel, we use the following notations:

(AC) : for any t > 0 and x ∈ E, Pt(x, dy) is absolutely

continuous with respect to m.

(SF) : for any t > 0, Pt(Bb(E)) ⊂ Cb(E).

(RSF) : for any α > 0, Rα(Bb(E)) ⊂ Cb(E).

It is known that

(SF) =⇒ (RSF)︸ ︷︷ ︸
Takeda’s results

=⇒ (AC)︸ ︷︷ ︸
Our results

.
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Kato class

We define α-potential of ν by

Rαν(x) = Ex

[∫ ∞

0
e−αtdAν

t

]
, x ∈ E

where Aν
t is the PCAF associated to ν ∈ S1(X).

Definition 3 (Kato class)

(1) Suppose that X is transient. ν is said to be a

Green-bounded (SD0(X)) if supx∈E Rν(x) < ∞.

(2) ν is said to be a smooth measure of Kato class S1
K(X) if

lim
α→∞

sup
x∈E

Rαν(x) = 0.

(3) The local Kato class S1
LK(X) is defined by

SLK = {ν ∈ S1(X) : 1Kν ∈ S1
K(X) for any K cpt.}.
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Green-tight Kato class

Definition 4 (Two kinds of Green-tight measure)

Let ν ∈ S1(X) and α ≥ 0. When α = 0, we always assume

the transience of X.

(1) (Zhao) ν ∈ S1
K∞

(X)
def.⇐⇒ ν ∈ S1

K(X) and for any ε > 0

there exists a compact subset K = K(ε) of E such that

sup
x∈E

Rα(1Kcν)(x) < ε.

(2) (Chen) ν ∈ S1
CK∞

(X)
def.⇐⇒ for any ε > 0 there exists a

Borel subset K = K(ε) of E with ν(K) < ∞ and a

constant δ > 0 such that for all ν-measurable set

B ⊂ K with ν(B) < δ,

sup
x∈E

Rα(1B∪Kcν)(x) < ε.
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Green-tight Kato class

If α > 0, we rewrite S1
K∞

(X) (resp. S1
CK∞

(X)) with

S1
K

+
∞
(X) (resp. S1

CK
+
∞
(X)).

Remark 5

(1) Definition 4(1): Zhao originally introduced the class

S1
K∞

(X) in considering the gaugeability for d-dim.

absorbing Brownian motions (d ≥ 3) on bounded open

domains.

(2) Definition 4(2): However, S1
K∞

(X) is not enough to

develop the gaugeability and subcriticality for symmetric

Markov processes. To overcome some difficulty, Chen

introduced the class S1
CK∞

(X).

(3) The Borel set K = K(ε) in Definition 4(2) can be taken

to be a compact set by the inner regularity of m. Hence

S
CK

(+)
∞

(X) ⊂ S
K

(+)
∞

(X).
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Green-tight Kato class

Remark (continued)

(4) Chen proved that S1

K
(+)
∞

(X) = S1

CK
(+)
∞

(X) under (SF).

Later, Kim and Kuwae proved the coincidence under

(RSF). Moreover, the equality holds under the

ultracontractivity of X.

(5) If α > 0, S1
K

+
∞
(X) and S1

CK
+
∞
(X) are independent of

the choice of α > 0 by the resolvent equation.

(6) Chen proved that (S1
CK∞

(X) ⊂ )S1
CK

+
∞
(X) ⊂ S1

K(X).

(7) Clearly, S1
CK

+
∞
(X) = S1

CK∞
(X(1)).

In the sequel, we only consider 0-order Green-tight

measure by Remark 5(7).
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Main results

Theorem 6

Suppose that X satisfies (AC) and m ∈ S1
CK∞

(X(1)). Then

the L2-semigroup Pt is a compact operator on L2(E;m)

and its every eigenfunction has a finely continuous Borel

measurable bounded m-version. Moreover, if X satisfies

(RSF), then every eigenfunction has a bounded continuous

m-version.

Theorem 7

Suppose that X satisfies (AC) and m ∈ S1
CK∞

(X(1)). Then

the embedding F ↪→ L2(E;m) is compact.
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Main results

Theorem 8

Suppose that X is transient and it satisfies (AC). Let

ν ∈ S1
CK∞

(X). Then (Fe, E) is compactly embedded in

L2(E; ν).

Let λ2 be the bottom of the spectrum:

λ2 := inf

{
E(f, f) : f ∈ F ,

∫
E
f2dm = 1

}
.

A function ϕ0 on E is called a ground state of the

L2-generator for E if ϕ0 ∈ F , ∥ϕ0∥2 = 1 and

E(ϕ0, ϕ0) = λ2.

Theorem 9

Suppose that X satisfies (AC), (I) and m ∈ S1
CK∞

(X).

Then there exists a bounded ground state ϕ0 uniquely up to

sign. Moreover, ϕ0 can be taken to be strictly positive on E.
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Example

Theorem 10

Suppose that X is transient which possesses (RSF). Take

ν ∈ SD0(X) and assume ν ̸∈ SLK(X).

(1) If ν has the full quasi-support, then the time changed

process (X̌, ν) does not possess (RSF), but satisfies

(AC).

(2) There exists an β > 0 such that the killed process X−βν

does not possess (RSF), but satisfies (AC).

Is there a measure ν that satisfies this theorem?
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Example

Example 1 (Brownian motion)

Let X be the d-dimensional BM on Rd with d ≥ 3 and m

the Lebesgue measure on Rd.

Set xn := (2−n, 0, · · · , 0) ∈ Rd and rn = 8−n. We set

Vn(x) = 82n1Brn(xn)(x) and V (x) :=
∑∞

n=2 Vn(x). Then

we find that V m ∈ SD0(X) \ S1
LK(X) by Aizenman-Simon

(’82). Since X is transient, there exists a function g such

that 0 < g ≤ 1 m-a.e. and Rg ∈ Bb(E). We put

ν = (V + g)m. Then we know that the time-changed

processes X̂ν associated with ν and the killed process X−βν

for some β > 0 do not possess (RSF) by Theorem 10, but

satisfy (AC).
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Example

Example 2 (stable process)

Take α ∈ (0, 2) and m ≥ 0. Let X = (Ω, Xt, Px) be a Lévy

process on Rd with

E0[e
i⟨ξ,Xt⟩] = exp

(
−t((|ξ|2 + m2/α)α/2 − m)

)
If m > 0, it is called the relativistic α-stable process with

mass m. We assume the transience of X, i.e. d ≥ 3 with

m > 0, or d > α with m = 0. Let xn and rn be the point

and constant as in Example 1. We fix G := B1(0). We set

Vn(x) = 8αn1Brn(xn)(x) and V (x) :=
∑∞

n=2 Vn(x). Then

V m ∈ SD0(X) \ S1
LK(X). Putting ν = (V + g)m, we know

that the time-changed process X̌ν and killed process X−βν

for some β > 0 do not possess (RSF) by Theorem , but

satisfy (AC).
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Thank you

Thank you for your attention !!


	Introduction
	Motivation

	Setting
	Setting
	(AC), (SF), (RSF)
	Kato class
	Green-tight Kato class

	Main results
	Main results

	Example
	Example
	Thank you


