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1. Overview and Related Works



Overview

! The macroscopic density of the (WASEP)n evolves
according to the nonlinear heat eq. as the system size n
grows to infinity (Hydrodynamic limit):

∂tu = ∇ · [D(u)∇u] +∇ · [σ(u)m] , (1)

where D, σ are d × d -matrices (Diffusivity and Mobility)
and m ∈ Rd is a given vector.

! For small ε > 0, let us consider the first order correction
to (1) around a constant profile α0 ∈ (0, 1):

{
∂tuε = ∇ · [D(uε)∇uε] + ε−1∇ · [σ(uε)m] ,

uε(0, ·) = α0 + εv0 ,
(2)

for some smooth function v0.



! The solution uε should evolve as uε
t ∼ α0 + εvt .

! Indeed, if σ′(α0) = 0, the sequence {ε−1(uε − α0)}ε>0

converges to the solution to the Burgers eq. as ε ↓ 0
(Incompressible limit):

{
∂tv = ∇ · [D(α0)∇v ] + (1/2)∇ · [v 2σ′′(α0)m] ,

v(0, ·) = v0(·) .

! Main Result (rough version):
Taking ε = εn ↓ 0 (n → ∞), the correctly scaled density
of the (WASEP)εnn evolves according to the Burgers eq.



Related Works

! Many results on hydrodynamic limits.

! Esposito-Marra-Yau, 94, 96 · · · Derivation of Burgers
equation and Navier-Stokes equation (d ≥ 3).

! Quastel-Yau, 98 · · · Large deviations for the
incompressible limits (d = 3).

! Beltán-Landim, 08 · · · Derivation of Burgers equation
and Navier-Stokes equation in any dimensions but with
(meso-scopically) big jumps.

! Jara-Menezes, 19+ · · · Sharp entropy bound.



2. Model and Main Results



Model

! Each particle moves on the d -dimensional discrete torus
Td

n = (Z/nZ)d = {1, 2, · · · , n}d , n ∈ N. Let Td be the
d -dimensional torus Td = (R/Z)d = [0, 1)d .

! Denote the number of particles at site x ∈ Td
n at time t

by ηnt (x) (η
n
t = {ηnt : x ∈ Td

n} ∈ {0, 1}Td
n ).

! Some parameters:
! {εn}n∈N ⊂ R: a sequence converging to 0.
! (cj)dj=1: nonnegative local functions.
! m = (m1, . . . ,md): a vector in Rd .



! Let ηnt be a Markov process on {0, 1}Td
n with the

generator Ln = n2LSn + ε−1
n nLAn with

(LSn f ) (η) =
∑

x∈Td
n

d∑

j=1

cj(τxη) {f (σx ,x+ejη)− f (η)} ,

(LAn f ) (η) =
∑

x∈Td
n

d∑

j=1

mj cj(τxη) ηx+ej (1− ηx)

× {f (σx ,x+ejη)− f (η)} .

for a function f : {0, 1}Td
n → R.



The dynamics of our particle system is as follows:

! Each particle can jump from x to x + ej or x − ej at given
rates only if the site x is occupied and the site x + ej or
x − ej is vacant.



! For a continuous function u0 : Td → [0, 1], let νn(u0) be
the product Bernoulli measure on {0, 1}Td

n :

νn(u0) (η : η(x) = 1) = u0(x/n) , x ∈ Td
n .

! Gradient condition: For each j , there exist finitely
supported mean zero signed measures mj ,p, p = 1, . . . , nj
and local functions gj ,p such that

j0,ej ≡ cj(η)[η0 − ηej ] =

nj∑

p=1

∑

y∈Zd

mj ,p(y)gj ,p(τyη) .

! j0,ej is called current across the bond (0, ej).



Classical case (εn = 1)

! Assume that ηn0
d
= νn(u0) for some continuous function

u0 : Td → [0, 1].
! Hydrodynamic limit: For any t ≥ 0 and any smooth

function G : Td → R,

lim
n→∞

En

⎡

⎣

∣∣∣∣∣∣
1

nd

∑

x∈Td
n

G (x/n)ηnt (x)−
∫

Td
G (x)u(t, x)dx

∣∣∣∣∣∣

⎤

⎦ = 0 ,

where u : [0,∞)× Td → [0, 1] is the unique weak
solution of the Cauchy problem

{
∂tu = ∇ · [D(u)∇u] +∇ · [σ(u)m] ,

u(0, ·) = u0(·) .



Incompressible case (εn ↓ 0)

! Fix α0 ∈ (0, 1) with σ′(α0) = 0 and assume that

ηn0
d
= νn(α0 + εnv0) for some function v0 ∈ C 3+(Td).

! Let v : [0,∞)× Td → R be the unique weak (classical)
solution of the Burgers eq.:
{
∂tv = ∇ · [D(α0)∇v ] + (1/2)∇ · [v 2σ′′(α0)m] ,

v(0, ·) = v0(·) .

! For each t ≥ 0, let un
t = α0 + εnvt , νn

t = νn(un
t ) and let

µn
t be the distribution of ηnt .



Main Results

Theorem 1 (Jara-Landim-T., 19+)
Assume that n2ε4n ≤ C0gd(n) for some constant C0, where

gd(n) = n , log n , 1 , if d = 1, d = 2, d ≥ 3,

respectively. Then, for any T > 0, there exists a constant
C1 = C1(T , v0,C0) such that for any 0 ≤ t ≤ T,

H(µn
t |νn

t ) ≤ C1n
d−2gd(n) ,

where H(µn
t |νn

t ) =

∫
dµn

t

dνn
t
log

dµn
t

dνn
t
dνn

t (relative entropy).



Corollary 2 (Jara-Landim-T., 19+)
Assume that n2ε4n ≤ C0gd(n) and ε2nn

2gd(n)−1 → ∞. For any
t ≥ 0 and any smooth function G : Td → R,

lim
n→∞

En

⎡

⎣

∣∣∣∣∣∣
1

εnnd

∑

x∈Td
n

G (x/n)[ηnt (x)− α0]−
∫

Td

G (x)v(t, x)dx

∣∣∣∣∣∣

⎤

⎦ = 0 ,

Remarks

! Initial distribution: The assumption ηn0
d
= νn(α0 + εnv0)

can be replaced with the entropy bound at time 0.

! σ′(α0) = 0: In the case of general α ∈ (0, 1), introducing
the Galilean transformation α + εnv(t, x − ε−1

n σ′(α)mt),
we can obtain a similar result.

! In 1D case, ε2nn
2gd(n)−1 → ∞ ⇔ εnn1/2 → ∞. Since in

the critical case (εn = n−1/2) one can observe the
Gaussian fluctuation, this condition seems unavoidable.



3. Sketch of the Proof



! Following [Jara-Menezes, 19+], we shall compute the
entropy production. Let Hn

t = H(µn
t |νn

t ). Then, we have

d

dt
Hn

t ≤ −n2D(gn
t , L

S
n , ν

n
t ) +

∫ {
L∗,ν

n
t

n 1− ∂t log ν
n
t

}
dµn

t ,

where gn
t represents dµn

t /dν
n
t , L

∗,νnt
n the adjoint of Ln in

L2(νn
t ), D(gn

t , L
S
n , ν

n
t ) the Dirichlet form

D(gn
t , L

S
n , ν

n
t ) =

∑

x∈Td
n

d∑

j=1

∫ {√
gn
t (ηx,x+ej )−

√
gn
t (η)

}2
νnt (dη) .

! We need to compute the integrand L∗,ν
n
t

n 1− ∂t log νn
t

explicitly. Indeed, it can be expressed in terms of the
“Fourier coefficients” of gj ,p (but quite messy...).



Computation of L∗,ν
n
t

n 1− ∂t log νnt

! Since νn
t = νn(un

t ) is just the Bernoulli measure with
mean un

t = α0 + εnvt , one can easily obtain

∂t log ν
n
t = εn

∑

x∈Td
n

(∂tv)(t, x)ωx ,

where

ωx =
ηx − un

t (x)

un
t (x)(1− un

t (x))
, x ∈ Td

n .

! Recall that Ln = n2LSn + ε−1
n nLAn . So the adjoint operator

L∗,ν
n
t

n 1 can be written as

L∗,ν
n
t

n 1 = n2L∗,S ,ν
n
t

n 1+ ε−1
n nL∗,A,ν

n
t

n 1 .



! After long computations, one can obtain

L∗,ν
n
t

n 1 =
∑

j ,x

K n
j (t, x)ωx+

∑

j ,x

∑

A:|A|≥2

Hn
j (t, x ,A)ω(A+x) ,

for some K n
j (t, x),H

n
j (t, x ,A), where

ω(B) =
∏

x∈B

ωx , B ⊂ Td
n .

! K n
j (t, x) can be computed as

K n
j (t, x) = n2

{
Eνnt

[
jx−ej ,x

]
− Eνnt

[
jx ,x+ej

]}
+ ε−1

n nĨj(t, x − ej)

∼ ∇n · [D(unt )∇nu
n
t ] + ε−1

n ∇n · [σ(unt )m] .



! Due to the choice of the reference density un
t , the degree

one terms do not vanish. However, we can show

sup
j ,x

∣∣εn∂tv(t, x/n)− K n
j (t, x)

∣∣≤ C (T )
(
ε2n + 1/n

)
.

for any 0 ≤ t ≤ T , n ∈ N.
! The entropy inequality tells us that

∫
fdµn

t ≤ 1

γ

[
H(µn

t |νn
t ) + log

∫
eγf dνn

t

]
,

for any function f : {0, 1}Td
n → R and any γ > 0.

! Control of log

∫
exp

{
∑

j ,x

K n
j (t, x)ωx

}
dνn

t is easy.

! The second and higher degree terms can be controlled by
following Jara-Menezes’s argument.



Thank you for your attention.


