Incompressible limit for weakly asymmetric simple exclusion processes

Kenkichi TSUNODA joint with Milton Jara and Claudio Landim

Department of Mathematics, Osaka University

3, Sep, 2019

Outline of the talk

- 1. Overview and Related Works
- 2. Model and Main Results
- 3. Sketch of the Proof

1. Overview and Related Works

Overview

The macroscopic density of the (WASEP)_n evolves according to the nonlinear heat eq. as the system size n grows to infinity (Hydrodynamic limit):

$$\partial_t u = \nabla \cdot [D(u)\nabla u] + \nabla \cdot [\sigma(u)\mathbf{m}] , \qquad (1)$$

where D, σ are $d \times d$ -matrices (Diffusivity and Mobility) and $\mathbf{m} \in \mathbb{R}^d$ is a given vector.

For small ε > 0, let us consider the first order correction to (1) around a constant profile α₀ ∈ (0, 1):

$$\begin{cases} \partial_t u^{\varepsilon} = \nabla \cdot [D(u^{\varepsilon}) \nabla u^{\varepsilon}] + \varepsilon^{-1} \nabla \cdot [\sigma(u^{\varepsilon}) \mathbf{m}] , \\ u^{\varepsilon}(0, \cdot) = \alpha_0 + \varepsilon v_0 , \end{cases}$$
(2)

for some smooth function v_0 .

- The solution u^{ε} should evolve as $u_t^{\varepsilon} \sim \alpha_0 + \varepsilon v_t$.
- Indeed, if σ'(α₀) = 0, the sequence {ε⁻¹(u^ε − α₀)}_{ε>0} converges to the solution to the Burgers eq. as ε ↓ 0 (Incompressible limit):

$$\begin{cases} \partial_t \mathbf{v} = \nabla \cdot [D(\alpha_0) \nabla \mathbf{v}] + (1/2) \nabla \cdot [\mathbf{v}^2 \sigma''(\alpha_0) \mathbf{m}] \\ \mathbf{v}(\mathbf{0}, \cdot) = \mathbf{v}_0(\cdot) . \end{cases}$$

Main Result (rough version): Taking ε = ε_n ↓ 0 (n → ∞), the correctly scaled density of the (WASEP)^{ε_n}_n evolves according to the Burgers eq.

Related Works

- Many results on hydrodynamic limits.
- ► Esposito-Marra-Yau, 94, 96 · · · Derivation of Burgers equation and Navier-Stokes equation (d ≥ 3).
- ► Quastel-Yau, 98 ··· Large deviations for the incompressible limits (d = 3).
- Beltán-Landim, 08 ··· Derivation of Burgers equation and Navier-Stokes equation in any dimensions but with (meso-scopically) big jumps.
- Jara-Menezes, $19 + \cdots$ Sharp entropy bound.

2. Model and Main Results

Model

- Each particle moves on the *d*-dimensional discrete torus T^d_n = (ℤ/nℤ)^d = {1, 2, · · · , n}^d, n ∈ ℕ. Let T^d be the *d*-dimensional torus T^d = (ℝ/ℤ)^d = [0, 1)^d.
- Denote the number of particles at site x ∈ T^d_n at time t by ηⁿ_t(x) (ηⁿ_t = {ηⁿ_t : x ∈ T^d_n} ∈ {0,1}^{T^d_n}).
- Some parameters:
 - $\{\varepsilon_n\}_{n\in\mathbb{N}}\subset\mathbb{R}$: a sequence converging to 0.
 - $(c_j)_{j=1}^d$: nonnegative local functions.
 - $\mathbf{m} = (\mathbf{m}_1, \dots, \mathbf{m}_d)$: a vector in \mathbb{R}^d .

• Let η_t^n be a Markov process on $\{0,1\}^{\mathbb{T}_n^d}$ with the generator $L_n = n^2 L_n^S + \varepsilon_n^{-1} n L_n^A$ with

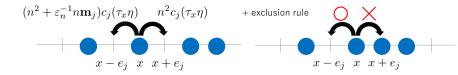
$$(L_n^S f)(\eta) = \sum_{x \in \mathbb{T}_n^d} \sum_{j=1}^d c_j(\tau_x \eta) \{ f(\sigma^{x,x+e_j}\eta) - f(\eta) \} ,$$

$$(L_n^A f)(\eta) = \sum_{x \in \mathbb{T}_n^d} \sum_{j=1}^d \mathbf{m}_j c_j(\tau_x \eta) \eta_{x+e_j} (1-\eta_x) \times \{ f(\sigma^{x,x+e_j}\eta) - f(\eta) \} .$$

for a function $f: \{0,1\}^{\mathbb{T}_n^d} \to \mathbb{R}$.

The dynamics of our particle system is as follows:

► Each particle can jump from x to x + e_j or x - e_j at given rates only if the site x is occupied and the site x + e_j or x - e_j is vacant.



For a continuous function u₀ : T^d → [0, 1], let νⁿ(u₀) be the product Bernoulli measure on {0, 1}^{T^d_n}:

$$u^n(u_0)(\eta:\eta(x)=1) = u_0(x/n), \quad x \in \mathbb{T}_n^d$$

► Gradient condition: For each *j*, there exist finitely supported mean zero signed measures m_{j,p}, p = 1,..., n_j and local functions g_{j,p} such that

$$j_{0,e_j} \equiv c_j(\eta)[\eta_0 - \eta_{e_j}] = \sum_{p=1}^{n_j} \sum_{y \in \mathbb{Z}^d} m_{j,p}(y) g_{j,p}(\tau_y \eta) .$$

• j_{0,e_i} is called current across the bond $(0, e_i)$.

Classical case ($\varepsilon_n = 1$)

- Assume that $\eta_0^n \stackrel{\mathrm{d}}{=} \nu^n(u_0)$ for some continuous function $u_0 : \mathbb{T}^d \to [0, 1].$
- Hydrodynamic limit: For any t ≥ 0 and any smooth function G : T^d → R,

$$\lim_{n\to\infty}\mathbb{E}^n\left[\left|\frac{1}{n^d}\sum_{x\in\mathbb{T}_n^d}G(x/n)\eta_t^n(x)-\int_{\mathbb{T}^d}G(x)u(t,x)dx\right|\right] = 0,$$

where $u: [0,\infty) \times \mathbb{T}^d \to [0,1]$ is the unique weak solution of the Cauchy problem

$$\begin{cases} \partial_t u = \nabla \cdot [D(u)\nabla u] + \nabla \cdot [\sigma(u)\mathbf{m}] ,\\ u(0,\cdot) = u_0(\cdot) . \end{cases}$$

Incompressible case $(\varepsilon_n \downarrow 0)$

- ▶ Fix $\alpha_0 \in (0, 1)$ with $\sigma'(\alpha_0) = 0$ and assume that $\eta_0^n \stackrel{d}{=} \nu^n(\alpha_0 + \varepsilon_n v_0)$ for some function $v_0 \in C^{3+}(\mathbb{T}^d)$.
- Let v : [0,∞) × T^d → ℝ be the unique weak (classical) solution of the Burgers eq.:

$$\begin{cases} \partial_t \mathbf{v} = \nabla \cdot [D(\alpha_0) \nabla \mathbf{v}] + (1/2) \nabla \cdot [\mathbf{v}^2 \sigma''(\alpha_0) \mathbf{m}] ,\\ \mathbf{v}(0, \cdot) = \mathbf{v}_0(\cdot) . \end{cases}$$

▶ For each $t \ge 0$, let $u_t^n = \alpha_0 + \varepsilon_n v_t$, $\nu_t^n = \nu^n(u_t^n)$ and let μ_t^n be the distribution of η_t^n .

Main Results

Theorem 1 (Jara-Landim-T., 19+) Assume that $n^2 \varepsilon_n^4 \leq C_0 g_d(n)$ for some constant C_0 , where

$$g_d(n) = n, \log n, 1, \quad \text{if } d = 1, d = 2, d \ge 3,$$

respectively. Then, for any T > 0, there exists a constant $C_1 = C_1(T, v_0, C_0)$ such that for any $0 \le t \le T$,

$$H(\mu_t^n|\nu_t^n) \leq C_1 n^{d-2} g_d(n) ,$$

where
$$H(\mu_t^n|
u_t^n) = \int rac{d\mu_t^n}{d
u_t^n}\lograc{d\mu_t^n}{d
u_t^n}d
u_t^n$$
 (relative entropy).

Corollary 2 (Jara-Landim-T., 19+) Assume that $n^2 \varepsilon_n^4 \leq C_0 g_d(n)$ and $\varepsilon_n^2 n^2 g_d(n)^{-1} \to \infty$. For any $t \geq 0$ and any smooth function $G : \mathbb{T}^d \to \mathbb{R}$,

$$\lim_{n\to\infty} \mathbb{E}^n \left[\left| \frac{1}{\varepsilon_n n^d} \sum_{x\in \mathbb{T}_n^d} G(x/n) [\eta_t^n(x) - \alpha_0] - \int_{\mathbb{T}^d} G(x) v(t,x) dx \right| \right] = 0,$$

Remarks

- ► Initial distribution: The assumption $\eta_0^n \stackrel{d}{=} \nu^n (\alpha_0 + \varepsilon_n v_0)$ can be replaced with the entropy bound at time 0.
- σ'(α₀) = 0: In the case of general α ∈ (0, 1), introducing the Galilean transformation α + ε_nν(t, x − ε_n⁻¹σ'(α)mt), we can obtain a similar result.
- In 1D case, ε_n²n²g_d(n)⁻¹ → ∞ ⇔ ε_nn^{1/2} → ∞. Since in the critical case (ε_n = n^{-1/2}) one can observe the Gaussian fluctuation, this condition seems unavoidable.

3. Sketch of the Proof

Following [Jara-Menezes, 19+], we shall compute the entropy production. Let Hⁿ_t = H(µⁿ_t|νⁿ_t). Then, we have

$$\frac{d}{dt}H_t^n \leq -n^2 D(g_t^n, L_n^S, \nu_t^n) + \int \left\{L_n^{*,\nu_t^n} \mathbf{1} - \partial_t \log \nu_t^n\right\} d\mu_t^n ,$$

where g_t^n represents $d\mu_t^n/d\nu_t^n$, L_n^{*,ν_t^n} the adjoint of L_n in $L^2(\nu_t^n)$, $D(g_t^n, L_n^S, \nu_t^n)$ the Dirichlet form

$$D(g_t^n, L_n^S, \nu_t^n) = \sum_{x \in \mathbb{T}_n^d} \sum_{j=1}^d \int \left\{ \sqrt{g_t^n(\eta^{x, x+e_j})} - \sqrt{g_t^n(\eta)} \right\}^2 \nu_t^n(d\eta) .$$

We need to compute the integrand L^{*,νⁿ}_t 1 − ∂_t log νⁿ_t explicitly. Indeed, it can be expressed in terms of the "Fourier coefficients" of g_{i,p} (but quite messy...).

Computation of $L_n^{*,\nu_t^n} \mathbf{1} - \partial_t \log \nu_t^n$

Since νⁿ_t = νⁿ(uⁿ_t) is just the Bernoulli measure with mean uⁿ_t = α₀ + ε_nν_t, one can easily obtain

$$\partial_t \log \nu_t^n = \varepsilon_n \sum_{x \in \mathbb{T}_n^d} (\partial_t \mathbf{v})(t, x) \omega_x ,$$

where

$$\omega_x = \frac{\eta_x - u_t^n(x)}{u_t^n(x)(1 - u_t^n(x))} , \quad x \in \mathbb{T}_n^d .$$

▶ Recall that $L_n = n^2 L_n^S + \varepsilon_n^{-1} n L_n^A$. So the adjoint operator $L_n^{*,\nu_t^n} \mathbf{1}$ can be written as

$$\mathcal{L}_n^{*,\nu_t^n}\mathbf{1} = n^2 \mathcal{L}_n^{*,\mathcal{S},\nu_t^n}\mathbf{1} + \varepsilon_n^{-1} n \mathcal{L}_n^{*,\mathcal{A},\nu_t^n}\mathbf{1}$$

After long computations, one can obtain

$$L_n^{*,\nu_t^n}\mathbf{1} = \sum_{j,x} K_j^n(t,x)\omega_x + \sum_{j,x} \sum_{A:|A|\geq 2} H_j^n(t,x,A)\omega(A+x) ,$$

for some $K_j^n(t, x), H_j^n(t, x, A)$, where

$$\omega(B) = \prod_{x \in B} \omega_x , \quad B \subset \mathbb{T}_n^d .$$

• $K_j^n(t,x)$ can be computed as

$$\begin{aligned} \mathcal{K}_{j}^{n}(t,x) &= n^{2} \left\{ E_{\nu_{t}^{n}}\left[j_{x-e_{j},x} \right] - E_{\nu_{t}^{n}}\left[j_{x,x+e_{j}} \right] \right\} + \varepsilon_{n}^{-1} n \widetilde{l_{j}}(t,x-e_{j}) \\ &\sim \nabla_{n} \cdot \left[D(u_{t}^{n}) \nabla_{n} u_{t}^{n} \right] + \varepsilon_{n}^{-1} \nabla_{n} \cdot \left[\sigma(u_{t}^{n}) \mathbf{m} \right] \,. \end{aligned}$$

Due to the choice of the reference density uⁿ_t, the degree one terms do not vanish. However, we can show

$$\sup_{j,x} \left| \varepsilon_n \partial_t v(t,x/n) - K_j^n(t,x) \right| \le C(T) \left(\varepsilon_n^2 + 1/n \right) \ .$$

for any $0 \leq t \leq T, n \in \mathbb{N}$.

The entropy inequality tells us that

$$\int f d\mu_t^n \leq \frac{1}{\gamma} \left[H(\mu_t^n | \nu_t^n) + \log \int e^{\gamma f} d\nu_t^n \right] ,$$

for any function $f : \{0,1\}^{\mathbb{T}_n^d} \to \mathbb{R}$ and any $\gamma > 0$.

• Control of log
$$\int \exp\left\{\sum_{j,x} K_j^n(t,x)\omega_x\right\} d\nu_t^n$$
 is easy.

The second and higher degree terms can be controlled by following Jara-Menezes's argument.

Thank you for your attention.