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Abstract

Let u be any Leray’s solution of 3D-NSE

∂tu = ν∆u + u · ∇u +∇p, div u ≡ 0, u0 = ϕ.

We show the existence of weak solutions to the following stochastic
Lagrangian particle equation

dXs,t = u(t ,Xs,t )dt +
√

2νdWt , Xs,s = x , t > s.

P ◦ Xs,t (x)−1 ∈ H1,p
q provided p,q ∈ [1,2) with 3

p + 2
q > 4.

For Lebesgue almost all (s, x), the solution X n
s,·(x) associated with

the mollifying velocity field un weakly converges to Xs,·(x) .
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Introduction

Let d > 2 and consider the following Navier-Stokes equation:

∂tu = ν∆u + u · ∇u +∇p, div u ≡ 0, u0 = ϕ,

where u = (u1, · · · ,ud ) is the velocity field of the fluid, ν > 0 is the
viscosity constant, and p stands for the pressure.

For any divergence free vector field ϕ ∈ L2(Rd ;Rd ), there exists a
divergence free Leray weak solution to 3D-NSEs with

‖u‖L∞([0,T ];L2(Rd )) + ‖∇u‖L2([0,T ];L2(Rd )) <∞, ∀T > 0.

Buckmaster and Vicol (2018, AOM) showed that there are infinitely
many weak solutions u ∈ C(R+; L2(T3)) for 3D-NSEs on the torus.
Existence and smoothness of Leray solutions are open problems!
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Introduction

Question: For any Leray solution u, is it possible to construct the
stochastic Lagrangian particle trajectory associated with u?

More precisely, for each starting point x , is there a unique solution
to the following SDE?

dXt = u(t ,Xt )dt +
√

2νdWt , X0 = x , (1.1)

where W is a d-dimensional standard Brownian motion on some
probability space (Ω,F ,P).
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Introduction

If u is smooth in x , then by Constantin and Iyer’s representation
(2008, CPAM), u can be reconstructed from Xt (x) as follows:

u(t , x) = PE(∇tX−1
t (x) · ϕ(X−1

t (x))),

where P is the Leray projection and X−1
t (x) is the inverse of stochas-

tic flow x 7→ Xt (x), and ∇t is the transpose of a Jacobian matrix.
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Introduction

Krylov and Röckner (2005, PTRF) showed the existence-uniqueness
of strong solutions to SDE (1.1) under the following assumption

u ∈ ∩T>0Lq([0,T ]; Lp(Rd )), p,q > 2, d
p + 2

q < 1. (1.2)

The unique solution Xt (x) is weakly differentiable in x and satisfies
(see Fedrizzi-Flandoli (2013), Z. (2013), (2016)):

sup
x∈Rd

E

(
sup

t∈[0,T ]

|∇Xt (x)|p
)
<∞, ∀p > 1, T > 0.
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Introduction

Leray’s solution does not satisfy

u ∈ ∩T>0Lq([0,T ]; Lp(Rd )), p,q > 2, d
p + 2

q < 1, (1.3)

but only satisfies

u ∈ ∩T>0Lq([0,T ]; Lp(Rd )), p,q > 2, d
p + 2

q >
d
2 . (1.4)

Deterministic Lagrangian particle trajectories associated with u have
been studied very well (see Robinson, Rodrigo and Sadowski’s
book).
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Introduction

Consider the following stochastic differential equation in Rd :

dXs,t = b(t ,Xs,t )dt +
√

2dWt , t > s, Xs,s = x , (1.5)

where b(t , x) : R+ × Rd → Rd is a measurable vector field.

The generator associated with the above SDE is given by

L b
t := ∆ + b(t , ·) · ∇.

Under the following assumption

b ∈ ∩T>0Lq([0,T ]; Lp(Rd )) =: Lq
loc(Lp), p,q > 2, d

p + 2
q < 2,

is there a semimartingale solution of SDE (1.5)? That is,

Xs,t = x +

∫ t

s
b(r ,Xs,r )dr +

√
2(Wt −Ws), ∀t > s ?? (1.6)
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Introduction

Krylov-Röckner (2005, PTRF): Strong well-posedness (d
p + 2

q < 1).

Bass-Chen (2006, AOP): Weak well-posedness in the class of semi-
martingales when b belongs to some generalized Kato’s class Kd−1.

Flandoli, Issoglio and Russo (2014) Well-posedness in the class of
“virtual” solutions when b ∈ H−α,p with α ∈ (0, 1

2) and p ∈ ( d
1−α ,

d
α).

Z.-Zhao (2017): Weak well-posedness in the class of Dirichlet pro-
cesses when b ∈ H−α,p with α ∈ (0, 1

2 ] and p ∈ ( d
1−α ,∞).

· · · · · · · · ·
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Introduction

Critical case (d
p + 2

q = 1 with p,q ∈ (2,∞)):

Beck, Flandoli, Gubinelli and Maurelli (2014) showed the existence
of strong solutions for almost all starting point x ∈ Rd .

Kinzebulatov and Semenov (2017) showed the existence of weak
solutions for each starting point x ∈ Rd when b ∈ Ld (Rd ) is time-
independent, but the uniqueness is left open.

Xicheng Zhang Stochastic Lagrangian path Fukuoka •2019.9.2-6 11 / 30



Introduction

Critical case (d
p + 2

q = 1 with p,q ∈ (2,∞)):

Beck, Flandoli, Gubinelli and Maurelli (2014) showed the existence
of strong solutions for almost all starting point x ∈ Rd .

Kinzebulatov and Semenov (2017) showed the existence of weak
solutions for each starting point x ∈ Rd when b ∈ Ld (Rd ) is time-
independent, but the uniqueness is left open.

Xicheng Zhang Stochastic Lagrangian path Fukuoka •2019.9.2-6 11 / 30



A counter-example

Consider the following concrete SDE:

Xt = −c
∫ t

0
Xs|Xs|−2ds + Wt , c ∈ R. (1.7)

If c > d , Kinzebulatov and Semenov showed that the above SDE
does not allow a solution. If c < cd , where cd ∈ (0,d) is some
constant only depending on d , they proved that there exists a weak
solution to the above SDE by utilizing the analytic construction of
the semigroup e−t(∆+b·∇).
By direct calculations, for b(x) := −cx |x |−2 and d > 3, we have

divb(x) = −c(d − 2)|x |−2 /∈ Ld/2
loc .

Intuitively, if c > d , then the centripetal force is so strong such
that the particle can not escape from the origin immediately so that
even though a random perturbation is added, there is no solution
for SDE (1.7).
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Main result

Let D be the space of all smooth functions with compact supports
and D ′ the dual space of D , which is also called distribution space.
The duality between D ′ and D is denoted by 〈〈·, ·〉〉. In particular, if
f (t , x) and g(t , x) are two real functions in R× Rd , then

〈〈f ,g〉〉 =

∫
R
〈f (t),g(t)〉dt with 〈f (t),g(t)〉 :=

∫
Rd

f (t , x)g(t , x)dx .

For two distributions f ,g ∈ D ′, one says that f 6 g if for any non-
negative ϕ ∈ D ,

〈〈f , ϕ〉〉 6 〈〈g, ϕ〉〉.
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For α ∈ R and p ∈ [1,∞], let Hα,p be the usual Bessel potential
space with norm:

‖f‖α,p := ‖(I−∆)α/2f‖p =

(∫
Rd
|(I−∆)α/2f (x)|pdx

)1/p

.

For α ∈ R and p,q ∈ [1,∞], let Hα,p
q := Lq(R; Hα,p) be the space

of spatial-time functions with norm

‖f‖α,p;q :=

(∫
R
‖f (t , ·)‖qα,pdt

)1/q

.
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For r > 0, we define

Br := {x ∈ Rd : |x | < r}, Qr := (−r2, r2)× Br .

Fix χ ∈ C∞(Rd+1; [0,1]) with χ|Q1 = 1 and χ|Qc
2

= 0. For r > 0 and
(s, z) ∈ Rd+1, define

χr (t , x) := χ(r−2t , r−1x), χs,z
r (t , x) := χr (t − s, x − z).

Fix r > 0. Let H̃α,p
q be the Banach space of all functions f ∈ Hα,p

q,loc
with

|||f |||α,p;q := sup
s,z
‖fχs,z

r ‖α,p;q <∞.

For p′ > p,q′ > q, we have H̃α,p′
q′ ⊂ H̃α,p

q (Hα,p′
q′ * Hα,p

q ).
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(s, z) ∈ Rd+1, define

χr (t , x) := χ(r−2t , r−1x), χs,z
r (t , x) := χr (t − s, x − z).

Fix r > 0. Let H̃α,p
q be the Banach space of all functions f ∈ Hα,p

q,loc
with

|||f |||α,p;q := sup
s,z
‖fχs,z

r ‖α,p;q <∞.

For p′ > p,q′ > q, we have H̃α,p′
q′ ⊂ H̃α,p

q (Hα,p′
q′ * Hα,p

q ).

Xicheng Zhang Stochastic Lagrangian path Fukuoka •2019.9.2-6 15 / 30



For r > 0, we define

Br := {x ∈ Rd : |x | < r}, Qr := (−r2, r2)× Br .

Fix χ ∈ C∞(Rd+1; [0,1]) with χ|Q1 = 1 and χ|Qc
2

= 0. For r > 0 and
(s, z) ∈ Rd+1, define

χr (t , x) := χ(r−2t , r−1x), χs,z
r (t , x) := χr (t − s, x − z).

Fix r > 0. Let H̃α,p
q be the Banach space of all functions f ∈ Hα,p

q,loc
with

|||f |||α,p;q := sup
s,z
‖fχs,z

r ‖α,p;q <∞.

For p′ > p,q′ > q, we have H̃α,p′
q′ ⊂ H̃α,p

q (Hα,p′
q′ * Hα,p

q ).

Xicheng Zhang Stochastic Lagrangian path Fukuoka •2019.9.2-6 15 / 30



Let C be the space of all continuous functions from R+ to Rd , which
is endowed with the usual Borel σ-field B(C).

All the probability measures over (C,B(C)) is denoted by P(C).

Let ωt be the canonical process over C. For t > 0, let Bt := Bt (C)
be the natural filtration generated by {ωs : s 6 t}.
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Definition 1
For given (s, x) ∈ R+ × Rd , we call a probability measure Ps,x ∈P(C)
a martingale solution of SDE (1.5) with starting point (s, x) if

(i) Ps,x (ωt = x , t 6 s) = 1, and for each t > s,

EPs,x

(∫ t

s
|b(r , ωr )|dr

)
<∞.

(ii) For all f ∈ C2
c (Rd ), M f

t is a Bt -martingale under Ps,x , where

M f
t (ω) := f (ωt )− f (x)−

∫ t

s
L b

r f (ωr )dr , t > s.

All the martingale solution Ps,x with starting point (s, x) and drift b is
denoted by M b

s,x .
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Let Ps,x ∈ M b
s,x . By Lévy’s characterization for Brownian motion,

one sees that

Wt :=

√
2

2

(
ωt − ωs −

∫ t

s
b(r , ωr )dr

)
, t > s,

is a d-dimensional standard Browian motion under Ps,x , so that

ωt = x +

∫ t

s
b(r , ωr )dr +

√
2Wt , t > s.

In other words, (C,B(C),Ps,x , ωt ,Wt ) is a weak solution of SDE
(1.5).
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Theorem 2

Suppose that for some pi ,qi ∈ [2,∞) with d
pi

+ 2
qi
< 2, i = 1,2,

|||b|||0,p1;q1 + |||(div b)−|||0,p2;q2 <∞. (2.1)

For each (s, x) ∈ R+ ×Rd , there exists at least one martingale solution
Ps,x ∈ M b

s,x , which satisfies the following Krylov’s type estimate: for
any α ∈ [0,1] and p,q ∈ (1,∞) with d

p + 2
q < 2− α, there exist θ =

θ(α,p,q) > 0 and a constant C > 0 such that for all s 6 t0 < t1 < ∞
with t1 − t0 6 1 and f ∈ C∞c (Rd+1),

EPs,x

(∫ t1

t0
f (t , ωt )dt

∣∣∣∣∣Bt0

)
6 C(t1 − t0)θ|||f |||−α,p;q. (2.2)
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Ctd.
Moreover, we have the following conclusions

(i) (Weak uniqueness) For any mollifying approximation bn of b, there
is a Lebesgue-null set N ⊂ R+ × Rd such that for all (s, x) ∈ N c ,

Pn
s,x weakly converges to Ps,x ∈M b

s,x , where Pn
s,x ∈M bn

s,x .

(ii) (Almost surely Markov property) For each (s, x) ∈ N c , there is a
Lebesgue null set Is,x ⊂ [s,∞) such that for all t0 ∈ (s,∞) \ Is,x ,
any t1 > t0 and f ∈ Cc(Rd ),

EPs,x (f (ωt1)|Bt0) = EPt0,ωt0 (f (ωt1)), Ps,x − a.s.

(iii) (Lp-semigroup) Let Ts,t f (x) := EPs,x f (ωt ). For any p > 1 and T >
0, there is a constant C > 0 such that for Lebesgue almost all
0 6 s < t 6 T and f ∈ Lp(Rd ),

‖Ts,t f‖p 6 C‖f‖p. (2.3)
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Application to stochastic Lagrangian particle path of 3D-NSEs
If (divb)− ≡ 0, then ‖Ts,t f‖1 6 ‖f‖1 in (2.3). If divb ≡ 0, then for any
nonnegative f ∈ L1(Rd ), ‖Ts,t f‖1 = ‖f‖1. By (1.4), we can apply
the above theorem to the Leray solution of 3D-NSEs.

Under the assumptions

∇b ∈ L1
loc , (divb)−,b/(1 + |x |) ∈ L∞,

the existence and uniqueness of almost everywhere stochastic
flows are obtained in the framework of DiPerna-Lions’ theory has
been obtained in Zhang (2010). However, the existence of a solu-
tion is only shown for Lebesgue almost all starting point x ∈ Rd .
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Example
Let d > 3 and α < 3. Define

b(x) :=
∑
z∈Zd

γz
x − z
|x − z|α

φ(|x − z|),

where for some M > 0, γz ∈ (0,M) is a constant and φ ∈ C∞c (R+; [0,1])
with φ(r) = 1 for r ∈ [0,1] and φ(r) = 0 for r > 2. It is easy to see that
(2.1) holds.
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Idea of Proof

We assume that for some pi ,qi ∈ [2,∞) with d
pi

+ 2
qi
< 2, i = 1,2,

κ := |||b|||p1;q1 + |||(divb)−|||p2;q2 <∞.

Let bn(t , x) = b(t , ·)∗ρn(x) be the mollifying approximation of b(t , ·).
It is easy to check that

sup
n

(
|||bn|||p1;q1 + |||(divbn)−|||p2;q2

)
6 Cκ,

and
bn ∈ Lq1

loc(R+; C∞b (Rd )).

For (s, x) ∈ R+ × Rd , consider the following SDE:

dX n
s,t = bn(t ,X n

s,t )dt +
√

2dWt , X n
s,s = x , t > s,

where W is a d-dimensional standard Brownian motion on some
complete filtered probability space (Ω,F , (Ft )t>0,P).
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We want to show that the law Pn
s,x of X n

s,·(x) is tight in C.

Notice that for any stopping time τ ,

X n
s,τ+δ(x)−X n

s,τ (x) =

∫ τ+δ

τ
bn(t ,X n

s,t (x))dt+
√

2(Wτ+δ−Wτ ), δ > 0.

If we can show that for some α > 0,

lim
δ→0

sup
n

sup
τ

E|X n
s,τ+δ(x)− X n

s,τ (x)|α = 0,

then the tightness follows.
By the strong Markov property, it suffices to show

sup
n

sup
s,x

E
∫ δ

0
bn(s + t ,X n

s,t (x))dt 6 cδ → 0.
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Lemma 3
For any α ∈ [0,1] and p,q ∈ (1,∞) with d

p + 2
q < 2 − α, there are

constants θ = θ(α,p,q) > 0 and C > 0 depending on κ,d, α,p,q,
pi ,qi such that for any f ∈ C∞c (Rd+1) and 0 6 s 6 t0 < t1 < ∞ with
t1 − t0 6 1,

sup
n

sup
x∈Rd

E

(∫ t1

t0
f (t ,X n

s,t (x))dt

∣∣∣∣∣Ft0

)
6 C(t1 − t0)θ|||f |||−α,p;q.
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Fix 0 6 s 6 t0 < t1 <∞ with t1 − t0 6 1 and f ∈ C∞c (Rd+1). Let un
be the smooth solution of the following backward PDE:

∂tun + ∆un + bn · ∇un + f = 0, un(t1, ·) = 0.

By Itô’s formula we have

un(t1,X n
s,t1) = un(t0,X n

s,t0)−
∫ t1

t0
f (t ,X n

s,t )dt+
√

2
∫ t1

t0
∇un(t ,X n

s,t )dWt .

By taking conditional expectation with respect to Ft0 , we obtain

E

(∫ t1

t0
f (t ,X n

s,t )dt

∣∣∣∣∣Ft0

)
= E

(
un(t0,X n

s,t0)|Ft0

)
6 ‖un(t0)‖∞.

The key point is to show that

‖un(t0)‖∞ 6 C|||f1[t0,t1]|||−α,p;q′ 6 C(t1 − t0)
1− q′

q |||f |||−α,p;q,

where q′ < q so that d
p + 2

q′ < 2− α.
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Maximal principle by De-Giorgi’s argument

Let V := L2
∞ ∩H1,2

2 , Vloc := L2
∞,loc ∩H1,2

2,loc .

We assume
b ∈ L2

2,loc , f ∈ D ′,

Consider the following PDE in Rd+1:

∂tu = ∆u + b · ∇u + f . (4.1)

Definition 4
A function u ∈ Vloc ∩ L∞loc is called a weak solution of PDE (4.1) if for
any nonnegative smooth function ϕ ∈ C∞c (Rd+1),

〈〈∂tu, ϕ〉〉 = −〈〈∇u,∇ϕ〉〉+ 〈〈b · ∇u, ϕ〉〉+ 〈〈f , ϕ〉〉.
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Theorem 5 (Global maximum estimate)

Suppose that for some αi ∈ [0,1] and pi ,qi ∈ (1,∞) with d
pi

+ 2
qi
< 2−αi ,

i = 1,2,3,

b ∈ H̃−α1,p1
q1

, −divb 6 Θb ∈ H̃−α2,p2
q2

, f ∈ H̃−α3,p3
q3

. (4.2)

Let u ∈ Vloc ∩ L∞loc be a weak solution of PDE (4.1) with initial value
u(0) = 0. For any T > 0, there exists a constant C > 0 depending only
on T ,d , αi ,pi ,qi and the quantity

κ := |||b|||−α1,p1;q1 + |||Θb|||−α1,p1;q1

such that

‖u‖L∞([0,T ]×Rd ) + |||u1[0,T ]|||V 6 C|||f1[0,T ]|||−α3,p3;q3 .
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When f ≡ 0, under (4.2) with αi = 0, the local maximum princi-
ple is proved by Nazarov and Ural’tseva (2012) by using Moser’s
iteration.

In elliptic case with b = 0 and f ∈ Lp(Rd ) for p > d
2 , Han-Lin (2011)

show the same maximum principle by De-Giorgi and Moser’s itera-
tions.
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Thank you for your kind attention!
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