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Abstract

@ Let u be any Leray’s solution of 3D-NSE

ou=vAu+u-Vu-+Vp, divu=0, up = o.
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Abstract

@ Let u be any Leray’s solution of 3D-NSE
ou=vAu+u-Vu-+Vp, divu=0, up = o.

@ We show the existence of weak solutions to the following stochastic
Lagrangian particle equation

dXs,l‘ = U(t, Xs,t)dt—I— @dWh Xs7s =X, t>s.
@ PoXs(x)~" € Hy” provided p, g € [1,2) with $+254

@ For Lebesgue almost all (s, x), the solution X{ (x) associated with
the mollifying velocity field u, weakly converges to Xs.(x) .
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@ Introduction
@ Main result
© !dea of Proof

e Maximal principle by De-Giorgi’s argument
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Introduction

@ Let d > 2 and consider the following Navier-Stokes equation:
ou=vAu+u-Vu+ Vp, divu=0, ug =,

where u = (uy, - - - , Ug) is the velocity field of the fluid, v > 0 is the
viscosity constant, and p stands for the pressure.
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@ Let d > 2 and consider the following Navier-Stokes equation:
ou=vAu+u-Vu+ Vp, divu=0, ug =,

where u = (uy, - - - , Uy) is the velocity field of the fluid, v > 0 is the
viscosity constant, and p stands for the pressure.

@ For any divergence free vector field o € L2(R?; RY), there exists a
divergence free Leray weak solution to 3D-NSEs with

Ul oo (0, 77:2(R0Y) + [Vl 12([0, T]:.02(ROY) < 00, VT > 0.
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Introduction

@ Let d > 2 and consider the following Navier-Stokes equation:
ou=vAu+u-Vu+ Vp, divu=0, ug =,

where u = (uy, - - - , Uy) is the velocity field of the fluid, v > 0 is the
viscosity constant, and p stands for the pressure.

@ For any divergence free vector field o € L2(R?; RY), there exists a
divergence free Leray weak solution to 3D-NSEs with

Ul oo (0, 77:2(R0Y) + [Vl 12([0, T]:.02(ROY) < 00, VT > 0.

@ Buckmaster and Vicol (2018, AOM) showed that there are infinitely
many weak solutions u € C(R; L?(T®)) for 3D-NSEs on the torus.
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Introduction

@ Let d > 2 and consider the following Navier-Stokes equation:
ou=vAu+u-Vu+ Vp, divu=0, ug =,

where u = (uy, - - - , Uy) is the velocity field of the fluid, v > 0 is the
viscosity constant, and p stands for the pressure.

@ For any divergence free vector field o € L2(R?; RY), there exists a
divergence free Leray weak solution to 3D-NSEs with

Ul oo (0, 77:2(R0Y) + [Vl 12([0, T]:.02(ROY) < 00, VT > 0.

@ Buckmaster and Vicol (2018, AOM) showed that there are infinitely
many weak solutions u € C(R; L?(T®)) for 3D-NSEs on the torus.

@ Existence and smoothness of Leray solutions are open problems!
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Introduction

@ Question: For any Leray solution u, is it possible to construct the
stochastic Lagrangian particle trajectory associated with u?
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Introduction

@ Question: For any Leray solution u, is it possible to construct the
stochastic Lagrangian particle trajectory associated with u?

@ More precisely, for each starting point x, is there a unique solution
to the following SDE?

dXt:U(t,Xt)dt+ VZUth, Xo =X, (11)

where W is a d-dimensional standard Brownian motion on some
probability space (2, #, P).
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Introduction

@ If uis smooth in x, then by Constantin and lyer’'s representation
(2008, CPAM), u can be reconstructed from X;(x) as follows:

u(t,x) = PE(V'X; (x) - o(X; " (X)),

where P is the Leray projection and X,‘1 (x) is the inverse of stochas-
tic flow x — X;(x), and V' is the transpose of a Jacobian matrix.
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Introduction

@ Krylov and Réckner (2005, PTRF) showed the existence-uniqueness
of strong solutions to SDE (1.1) under the following assumption

uc ﬁT>0Lq([07 T]' Lp(Rd))v p,q P 27 % + % <1 (12)
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Introduction

@ Krylov and Réckner (2005, PTRF) showed the existence-uniqueness
of strong solutions to SDE (1.1) under the following assumption

uc mT>0Lq([07 T]' Lp(Rd))v p,q P 27 % + % <1 (12)

@ The unique solution X;(x) is weakly differentiable in x and satisfies
(see Fedrizzi-Flandoli (2013), Z. (2013), (2016)):

sup E (| sup |[VXi(x)[P| <oo, Vp=1, T >0.
xerd  \t€[0,T]

Xicheng Zhang Stochastic Lagrangian path Fukuoka €2019.9.2-6 7/30



Introduction

@ Leray’s solution does not satisfy

uenrsol9([0, T LPRY), p,g>2, 9+2<1, (1.3

but only satisfies

uenmol9([0, T LP(RY), p.g>2, ¢+2>9. (14
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Introduction

@ Leray’s solution does not satisfy
u e Nr-oLl9([0, TI; LP(RY)), p,g=2, ¢+2 <1, (1.3)
but only satisfies
uenrold([0, T LP(RY), pg>2, 4+2>9 (1.4

@ Deterministic Lagrangian particle trajectories associated with u have
been studied very well (see Robinson, Rodrigo and Sadowski’s

book).

Fukuoka 2019.9.2-6 8/30
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Introduction

@ Consider the following stochastic differential equation in RY:
dXst = b(t, Xs1)dt + V2dW;, t > s, Xs s = X, (1.5)

where b(t,x) : R, x RY — RY is a measurable vector field.
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Introduction

@ Consider the following stochastic differential equation in RY:
dXst = b(t, Xs1)dt + V2dW;, t > s, Xs s = X, (1.5)

where b(t,x) : R, x RY — RY is a measurable vector field.
@ The generator associated with the above SDE is given by

ZP=n+b(t)- V.
@ Under the following assumption

b € Nr-oL9([0, T]; LP(RY)) =: L]

loc

p d, 2
(L), p.q=2, §+5<2

is there a semimartingale solution of SDE (1.5)? That is,

t
S
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Introduction

@ Krylov-Réckner (2005, PTRF): Strong well-posedness (2 + 2 < 1).
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@ Krylov-Réckner (2005, PTRF): Strong well-posedness (2 + 2 < 1).

@ Bass-Chen (2006, AOP): Weak well-posedness in the class of semi-
martingales when b belongs to some generalized Kato’s class K4_.
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Introduction

@ Krylov-Réckner (2005, PTRF): Strong well-posedness (2 + 2 < 1).

@ Bass-Chen (2006, AOP): Weak well-posedness in the class of semi-
martingales when b belongs to some generalized Kato’s class K4_.

@ Flandoli, Issoglio and Russo (2014) Well-posedness in the class of
“virtual” solutions when b € H=*P with o € (0, }) and p € (+Z., 9).

T—a’ «

@ Z.-Zhao (2017): Weak well-posedness in the class of Dirichlet pro-
cesses when b € H=*P with a € (0, 3] and p € (7%, c0).

T—a?
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Introduction

o Critical case (4 + 2 = 1 with p, g € (2, 00)):

Beck, Flandoli, Gubinelli and Maurelli (2014) showed the existence
of strong solutions for almost all starting point x € RY.
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Introduction

o Critical case (4 + 2 = 1 with p, g € (2, 00)):

Beck, Flandoli, Gubinelli and Maurelli (2014) showed the existence
of strong solutions for almost all starting point x € RY.

@ Kinzebulatov and Semenov (2017) showed the existence of weak
solutions for each starting point x € R? when b ¢ L9(RY) is time-
independent, but the uniqueness is left open.
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A counter-example

@ Consider the following concrete SDE:

t
Xi = —c/ Xs]XS\‘ZdSJr W, ceR. (1.7)
0
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A counter-example

@ Consider the following concrete SDE:
t
Xt = —c/ Xs|Xs|2ds+ W;, ceR. (1.7)
0

@ If ¢ > d, Kinzebulatov and Semenov showed that the above SDE
does not allow a solution. If ¢ < ¢y, where ¢4 € (0,d) is some
constant only depending on d, they proved that there exists a weak
solution to the above SDE by utilizing the analytic construction of
the semigroup e~ {(A+bV),
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A counter-example

@ Consider the following concrete SDE:
t
Xt = —c/ Xs|Xs|2ds+ W;, ceR. (1.7)
0

@ If ¢ > d, Kinzebulatov and Semenov showed that the above SDE
does not allow a solution. If ¢ < ¢y, where ¢4 € (0,d) is some
constant only depending on d, they proved that there exists a weak
solution to the above SDE by utilizing the analytic construction of
the semigroup e~ {(A+bV),

@ By direct calculations, for b(x) := —cx|x|~2 and d > 3, we have

divb(x) = —c(d — 2)|x| 2 ¢ L9/2,

loc
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A counter-example

@ Consider the following concrete SDE:
t
Xt = —c/ Xs|Xs|2ds+ W;, ceR. (1.7)
0

@ If ¢ > d, Kinzebulatov and Semenov showed that the above SDE
does not allow a solution. If ¢ < ¢y, where ¢4 € (0,d) is some
constant only depending on d, they proved that there exists a weak
solution to the above SDE by utilizing the analytic construction of
the semigroup e~ {(A+bV),

@ By direct calculations, for b(x) := —cx|x|~2 and d > 3, we have

divb(x) = —c(d — 2)|x| 2 ¢ L9/2,

loc

@ Intuitively, if ¢ > d, then the centripetal force is so strong such
that the particle can not escape from the origin immediately so that
even though a random perturbation is added, there is no solution
for SDE (1.7).
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Main result

@ Let ¥ be the space of all smooth functions with compact supports
and 2’ the dual space of 2, which is also called distribution space.
The duality between 2’ and & is denoted by ((-,-)). In particular, if
f(t, x) and g(t, x) are two real functions in R x RY, then

<<f79>>—4<f(f),g(f)>df with (f(1),9(t)) == [ f(t, x)g(t, x)dx.

Rd
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Main result

@ Let ¥ be the space of all smooth functions with compact supports
and 2’ the dual space of 2, which is also called distribution space.
The duality between 2’ and & is denoted by ((-,-)). In particular, if
f(t, x) and g(t, x) are two real functions in R x RY, then

<<f79>>—4<f(f),g(f)>df with (f(1),9(t)) == [ f(t, x)g(t, x)dx.

Rd

@ For two distributions f, g € 2’, one says that f < g if for any non-
negative ¢ € 2,
(f. o) < (g, 0)-
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@ Fora € R and p € [1,], let H*P be the usual Bessel potential
space with norm:

1/p
oo = 10 = 8321l = ([ 100 ) /2f00Pax)
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@ Fora € R and p € [1,], let H*P be the usual Bessel potential
space with norm:

1/p
1l = [I(1 — A2, = (/ AY2f(x )rpdx) .

@ Fora € Rand p,q € [1,0c], let Hy” := LI(R; H*P) be the space
of spatial-time functions with norm

1/q
T < / ||f(t,->||z,pdt) .
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@ For r > 0, we define

By :i={xeR?:|x| <r}, Qy:=(-r*r?) x B
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@ For r > 0, we define
By :i={xeR?:|x| <r}, Qy:=(-r*r?) x B

@ Fix x € C>*(R%*;[0, 1]) with x|q, = 1 and x|gg = 0. For r > 0 and
(s,z) € R, define

xr(t, x) = x(r=2t,r='x), x(t,x) == x(t — 8, x — 2).
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@ For r > 0, we define
By :i={xeR?:|x| <r}, Qy:=(-r*r?) x B

@ Fix x € C>*(R%*;[0, 1]) with x|q, = 1 and x|gg = 0. For r > 0 and
(s,z) € R, define

xr(t, x) = x(r=2t,r='x), x(t,x) == x(t — 8, x — 2).

@ Fix r > 0. Let Hy” be the Banach space of all functions f ¢ Hg"f}c
with

11 fllle,p:q == SSUZP (2% a,p;q < 0.
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@ For r > 0, we define
By :i={xeR?:|x| <r}, Qy:=(-r*r?) x B

@ Fix x € C>*(R%*;[0, 1]) with x|q, = 1 and x|gg = 0. For r > 0 and
(s,z) € R, define

xr(t, x) = x(r=2t,r='x), x(t,x) == x(t — 8, x — 2).

@ Fix r > 0. Let Hy” be the Banach space of all functions f ¢ Hg"f}c
with

11 fllle,p:q == SSUZP (2% a,p;q < 0.

@ Forp > p,q > g, we have IFH‘;;”/ c HP (H‘g;pl ¢ HgP).
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@ Let C be the space of all continuous functions from R to RY, which
is endowed with the usual Borel o-field B(C).
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@ Let C be the space of all continuous functions from R to RY, which
is endowed with the usual Borel o-field B(C).

@ All the probability measures over (C, B(C)) is denoted by &2(C).
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@ Let C be the space of all continuous functions from R to RY, which
is endowed with the usual Borel o-field B(C).

@ All the probability measures over (C, B(C)) is denoted by &2(C).

@ Let w; be the canonical process over C. For t > 0, let B; := B:(C)
be the natural filtration generated by {ws : s < t}.
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Definition 1

For given (s, x) € R, x RY, we call a probability measure Ps x € &(C)
a martingale solution of SDE (1.5) with starting point (s, x) if

(i) Psx(wt=x,t<s)=1,andforeach t > s,
t
EPsx ( / |b(r,w,)]dr> < g5,
S
(i) Forall f € C2(RY), M is a B;-martingale under Ps , where
t
M!(w) := f(wy) — f(X) —/ ZLPf(w)dr, t>s.
S

All the martingale solution Ps x with starting point (s, x) and drift b is
denoted by .#Z2,.

v
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@ LetPsx € =//f£x- By Lévy’s characterization for Brownian motion,
one sees that

¢
Wt::?<wt—ws—/b(r,wr)df>, t>s,
S

is a d-dimensional standard Browian motion under PPs x, so that

t
w,:x+/ b(r,w.)dr +V2W;, t>s.
S

In other words, (C, #(C), Ps x,wt, W;) is a weak solution of SDE
(1.5).
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Theorem 2

Suppose that for some pj, g; € [2, c0) with % + % <2,i=1,2,
l16Mll0,p4:q + [11(div )~ |llo,pp:q, < 00- (2.1)

For each (s, x) € R, x RY, there exists at least one martingale solution
Psx € //lsf?x, which satisfies the following Krylov's type estimate: for
any a € [0,1] and p,q € (1,00) with d+ 2 <2 q, there exist § =
0(a, p,q) > 0 and a constant C > 0 such that foralls <ty <t < oo
with t; — ty < 1 and f € CL(RI*1),

t
EFs.x < f(t, wy)dt
)

Bto> < C(tr = )’ lflll-apiq- (2.2)
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Ctd.
Moreover, we have the following conclusions

(i) (Weak uniqueness) For any mollifying approximation b, of b, there
is a Lebesgue-null set ' € R x RY such that for all (s, x) € N¢,

P, weakly converges to Ps x € .#2,, where P, € /5%,

(i) (Almost surely Markov property) For each (s, x) € N, there is a
Lebesgue null set Is x C [s, c0) such that for all & € (s,00) \ lsx,
any t; > fy and f € C;(R9),

Pty
EPsx(f(wy,)|By,) = E ©“0 (f(wy,)), Psx — a.s.
(i) (LP-semigroup) Let Ts¢f(x) := EFsxf(w;). Forany p > 1and T >

0, there is a constant C > 0 such that for Lebesgue almost all
0<s<t< Tandfe LP(RY),

1 7s,tf

lp < Cllfllp- (2.3)

v
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Application to stochastic Lagrangian particle path of 3D-NSEs

@ If (divb)™ =0, then || Ts+f||1 < ||f|l1 in (2.3). If divb = 0, then for any
nonnegative f € L'(RY), ||Ts:f|1 = ||f|1. By (1.4), we can apply
the above theorem to the Leray solution of 3D-NSEs.
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Application to stochastic Lagrangian particle path of 3D-NSEs
@ If (divb)™ =0, then || T +f||1 < ||f]|1 in (2.3). If divb = 0, then for any

nonnegative f € L'(RY), By (1.4), we can apply
the above theorem to the Leray solution of 3D-NSEs.

@ Under the assumptions

Vbell, (dive)~,b/(1+ |x|) L™,

the existence and uniqueness of almost everywhere stochastic
flows are obtained in the framework of DiPerna-Lions’ theory has
been obtained in Zhang (2010). However, the existence of a solu-
tion is only shown for Lebesgue almost all starting point x € RY.

v
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Example
Let d > 3 and a < 3. Define

b(x) = 3 v gadllx = 2)

zezd

where for some M > 0, v, € (0, M) is aconstantand ¢ € C2°(R; [0, 1])
with ¢(r) =1 for r € [0,1] and ¢(r) = 0 for r > 2. It is easy to see that
(2.1) holds.

v
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Idea of Proof

@ We assume that for some p;, g; € [2, 00) with % + % <2,i=1,2,

# = [[Blllpyigy + [ll(divD) [l pyiqe < 00
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Idea of Proof

@ We assume that for some p;, g; € [2, 00) with % + % <2,i=1,2,

# = [[Blllpyigy + [ll(divD) [l pyiqe < 00

@ Let by(t, x) = b(t,-)*pn(x) be the mollifying approximation of b(¢, -).
It is easy to check that

Sl;ip (\an\Hpum + H’(diVbn)_alz;%) < CH’

and
by e L7 (R, ; C*(RY)).

loc
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Idea of Proof

@ We assume that for some p;, g; € [2, 00) with % + % <2,i=1,2,

# = [[Blllpyigy + [ll(divD) [l pyiqe < 00

@ Let by(t, x) = b(t,-)*pn(x) be the mollifying approximation of b(¢, -).
It is easy to check that

Sl;ip (\anWp1;q1 + w(diVbn)_sz;%) < CH’

and
by e L7 (R, ; C*(RY)).

loc

@ For (s, x) € Ry x R, consider the following SDE:
dX0 = ba(t, X2)dt + V2dW;, Xs=x, t>s,

where W is a d-dimensional standard Brownian motion on some
complete filtered probability space (2, %, (%t)t=0, P).
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@ We want to show that the law P, of X¢ (x) is tight in C.
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@ We want to show that the law P, of X¢ (x) is tight in C.

@ Notice that for any stopping time r,

T+
XD, 5(3) X0 (x) = / ba(t, X24(3))dt+V2(Wyys— W), 6> 0.
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@ We want to show that the law P, of X¢ (x) is tight in C.

@ Notice that for any stopping time r,
T+0
Ls00-XE 00 = [ balt XE00)AtVEWE 5 We), 5> 0.

@ If we can show that for some a > 0,

im sup SUPE|XZ,.5(x) — X2 (X)|" = 0.
6—0 n T ’ ’

then the tightness follows.
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@ We want to show that the law P, of X¢ (x) is tight in C.

@ Notice that for any stopping time r,

T4+6
0 ()X (X) = / ba(t, X2, (X))t V2 Wy~ W), 6> 0.

@ If we can show that for some a > 0,

im sup SUPE|XZ,.5(x) — X2 (X)|" = 0.
6—0 n T ’ ’

then the tightness follows.
@ By the strong Markov property, it suffices to show

supsupIE/ bn(s + t, Xg(x))dt < ¢s — 0.
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Lemma 3

For any o € [0,1] and p,q € (1,00) with & + 2 < 2 — q, there are
constants 8 = 6(a,p,q) > 0 and C > 0 depending on k,d, a,p,q,
pi, q;i such that for any f € CgO(Rd+1) and0 < s< fy < i < oo with
th—1t <1,

n  xeRrd

t
sup sup E ( f(t, Xg(x))dt
b

9@) < C(tr = o)’ lIflll-apiq-
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@ Fix0<s<tfy<t <ocowithty —fp < 1andfe CPRIM). Let uy
be the smooth solution of the following backward PDE:

OtUn + AUp + by - Vup + f =0, up(ty,-) =0.
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@ Fix0<s<tfy<t <ocowithty —fp < 1andfe CPRIM). Let uy
be the smooth solution of the following backward PDE:

OtUn + AUp+ by - Vup+ f =0, un(ty,-) =0.

@ By Ité’s formula we have

t t
Un(th, X2, ) = Unlto, X0 )~ / F(EXD)AEVZ | Vun(t, X2)dWh.
t t
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@ Fix0<s<tfy<t <ocowithty —fp < 1andfe CPRIM). Let uy
be the smooth solution of the following backward PDE:

OtUn + AUp+ by - Vup+ f =0, un(ty,-) =0.

@ By Ité’s formula we have

t t
Un(th, X2, ) = Unlto, X0 )~ / F(EXD)AEVZ | Vun(t, X2)dWh.
t t

@ By taking conditional expectation with respect to .%;,, we obtain

b
E ( (1, X2y)dt
fo

%) = E(unlto, X241 7 ) < l1Un(10) -
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@ Fix0<s<tfy<t <ocowithty —fp < 1andfe CPRIM). Let uy
be the smooth solution of the following backward PDE:

OtUn + AUp+ by - Vup+ f =0, un(ty,-) =0.

@ By Ité’s formula we have

t t
Un(th, X2, ) = Unlto, X0 )~ / F(EXD)AEVZ | Vun(t, X2)dWh.
t t

@ By taking conditional expectation with respect to .%;,, we obtain

b
E ( (1, X2y)dt
b

%) = E(unlto, X241 7 ) < l1Un(10) -

@ The key point is to show that

,d
[un(to)lloo < ClllA g, 1/l —cpig < C(tr — 1)~ @ lIf[l|-a,p:5

where g’ < gsothat 2+ 2 <2 —a.
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Maximal principle by De-Giorgi’s argument

o Let ¥ := L2 NHL?, Yoo := L2, NHY2

oo,loc 2,loc*
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Maximal principle by De-Giorgi’s argument

12 1,2 72 1.2
o Let? =1L NH,®, Ve := L5 1oe N HL joc-
@ We assume

bels e, feZ,
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Maximal principle by De-Giorgi’s argument

o Let ¥ = L2 NHY?, Yo := L2, ,, NHY2 .
@ We assume

bels e, feZ,
@ Consider the following PDE in R9+1:

ou=Au+b-Vu+f. (4.1)

Definition 4

A function u € 7j,c N Ly, is called a weak solution of PDE (4.1) if for

any nonnegative smooth function p € CX(R+1),

(Oru, p) = —(Vu, Vo) + (b-Vu, ) + (f, ).
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Theorem 5 (Global maximum estimate)

Suppose that for some «; € [0,1] and p;, g; € (1, ) with %—F% < 2—qy,
i=1,2,3,
be H,*"P', —divb < ©p € Hp?>™, fe H 2P, (4.2)

2

Let u € Ve N1y, be a weak solution of PDE (4.1) with initial value
u(0) =0. Forany T > 0, there exists a constant C > 0 depending only
on T,d, aj, pi, qi and the quantity

.= H|b|||*041,,01;01 -+ |||@b|||*a1,P1;Q1

such that

|l oo (0, T1xrey + lu o, 77lll» < CllIf 110, 7l —08,5:05-
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@ When f = 0, under (4.2) with «; = 0, the local maximum princi-
ple is proved by Nazarov and Ural'tseva (2012) by using Moser’s
iteration.
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@ When f = 0, under (4.2) with «; = 0, the local maximum princi-
ple is proved by Nazarov and Ural'tseva (2012) by using Moser’s
iteration.

@ In elliptic case with b = 0 and f € LP(RY) for p > g, Han-Lin (2011)
show the same maximum principle by De-Giorgi and Moser’s itera-
tions.
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Thank you for your kind attention!

Xicheng Zhang Stochastic Lagrangian path Fukuoka €2019.9.2-6 30/30



	Introduction
	Main result
	Idea of Proof
	Maximal principle by De-Giorgi's argument

