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The stochastic p-Laplace problem
T >0, D C RY is a bounded Lipschitz domain, Q7 := (0, T) x D.

du —div(|VulP™2Vu)dt = ddB;, in Qx Qr

= Ap(u)
u=20 on Qx (0, T)x 0D
u(0,-) = up

where

» for 1 < p < 00, Ap is a nonlinear operator defined on the
Sobolev space W(;l’p(D). Special case: Ay = A is the classical
Laplace operator.

> (Q,F, P, (Ft)t>0, (Bt)t>0) is a stochastic basis and (5¢)¢>0 a
real-valued Brownian motion.

» up € L1(Q x D) is Fo-measurable.

» The right-hand side is an integral in the sense of It6 with

respect to (B¢)i>0, ® € L?(Q x Q7) progressively measurable.
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Motivation

» Flow through porous media in a turbulent regime: A nonlinear,
p-power type version of the Darcy law may be more
appropriate [Diaz, De Thellin; 1994].
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randomness. Adding random influences to the model, we also
take uncertainties and multiscale interactions into account.

» Randomness can be introduced as random external force by
adding a stochastic integral on the right-hand side of the
equation and by considering random initial values.

» The initial values may have poor regularity with respect to
both variables.
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Existence and uniqueness for [%- initial data

A unique strong solution can be obtained using classical
monotonicity methods for SPDEs [Pardoux;1975], [Krylov,
Rozovskii; 1983], [Liu, Rockner; 2015],...

Theorem

Let ug € L?(Q x D) be Fo-measurable. There exists a unique,
Fi-adapted, square-integrable stochastic process

u:Q x [0, T] — L2(D) with a.s. continuous paths such that
u(0,-) = up, u € LP(Q; LP(0, T; V)) and

u(t)uo/o div(yvu(s)|f>—2vu(s))ds:/o o(s) dfs

in L2(D) for all t € [0, T], a.s. in Q.
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monotonicity methods for SPDEs [Pardoux;1975], [Krylov,
Rozovskii; 1983], [Liu, Réckner; 2015],...

Theorem

Let up € L2(Q x D) be Fo-measurable. There exists a unique,
Fi-adapted, square-integrable stochastic process

u:Q x [0, T] — L2(D) with a.s. continuous paths such that
u(0,-) = up, u € LP(Q; LP(0, T; V)) and

u(t) — o — /Otdiv(]Vu(s)]”zVu(s))ds— /Otcb(s) dps

in L2(D) for all t € [0, T), a.s. in Q.
> For p> 24, V = W, P(D).
> For 1< p< 2%,V =W,?(D)nL*D).
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What about merely integrable initial data?

» The Itd formula yields the energy estimate
1 2
16Oy — 5 leolZ0y + HVus)IILp(D

/II‘j> )Tz ds+// s) dx dfs.
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What about merely integrable initial data?

» For Fo-measurable ug € L?(Q x D), the It6 formula yields the
energy estimate

1 1 t
Oy~ ol + [ IVu(s) ooy I

1 [t t
:2/0 19(5) 1172y ds+/0 /Du(s)cb(s)dxdﬁs,

» For up € L*(Q x D), this estimate is not available.

» Renormalization: Generic concept of strategies to get rid of
infinities.

» Renormalized solutions: Introduced by DiPerna and Lions 1989
in the study of the Boltzmann equation.

» Main idea: Nonlinear change of unknown v = S(u), where S is
chosen in order to remove infinite quantities.
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Renormalization and truncation
For S € C2(R) such that supp(S’) C [-M, M] for some M > 0,
S is constant outside [-M, M]. Thus, S(u)(t) = S(Tk(u))(t) for
all k > M.

For u € W, (D), from the chain rule for Sobolev functions it
follows that

S'(u)Vu = 5’(U)X{|u|§k}Vu = S'(u) T (u)Vu = S (u)V Ti(v).
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Derivation of the renormalized equation

Let u be a strong solution of the stochastic p-Laplace problem with
Fo-measurable initial value ug € L}(Q x D), i.e.,

t t
u(t) — uo — / div (|Vu(s)P2V u(s)) ds — / (s) dfs.
0 0
For S € C2(R) with bounded derivatives, the It& formula yields
t
S(u)(t) — S(uwo) — / div [S'(u)|Vul|P~2Vu] ds
0

‘ " _1 2 — "(u
+ [ sruvep - Gor1os = [ osw)ds,
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Consistency of renormalized solutions

Let u be a renormalized solution with Vu € LP(Q x Q7)9, £ > 0.

h{(r)

—£—-1 ¢ £ e+1

9=, o
0

in the renormalized equation (R2), for £ — oo, it follows that v is a
strong solution.

Choosing
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L'-contraction principle

Theorem

Let u, v be renormalized solutions with Fo-measurable initial values
up € LY(Q x D) and vy € LY(Q x D), respectively. Then,

sup_[Ju(t) — v(t)ll2(py < lluo — voll (o)
tel0,T]

a.s. in Q.
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L'-contraction principle

Theorem
Let u, v be renormalized solutions with Fo-measurable initial values
up € LY(Q x D) and vy € LY(Q x D), respectively. Then,

sup_[Ju(t) — v(t)ll2(py < lluo — voll (o)
tel0,T]

a.s. in Q.

Remark: As a consequence, renormalized solutions are unique.

10/21



Idea of the proof:

Let u, v be renormalized solutions with initial values wug, vp.
Subtracting the renormalized equation (R2) for v from the one for
u we obtain

d[S(u) — S(v)] — div[S'(v)|Vul[P72Vu — §'(v)|Vv|P~2V V] dt
+ S"(u)|VulP = S"(v)|Vv|P dt — %CDZ(S"(U) —S"(v))dt
— 0(S/(u) — S'(v)) d.
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Idea of the proof:

Let u, v be renormalized solutions with initial values wug, vp.
Subtracting the renormalized equation (R2) for v from the one for
u we obtain

d|u — v| = something <0

Formally, we choose S(r) = r and use the [t6 formula for the
absolute value.

11/21



Idea of the proof [Blanchard, Murat, Redwane; 2001]:

For s,0 > 0, we choose 5(r) = TZ(r) := [, (TZ)(7) dT with

(T7)'(r)

—S—0 —s S s+o
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Idea of the proof [Blanchard, Murat, Redwane; 2001]:
S(r)y=r:

S'(ry=1

[td6 formula for an approximation of the absolute value:

Gulu — v) = 11(/0 Te(r) dr.
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Idea of the proof [Blanchard, Murat, Redwane; 2001]:

S'(ry=1

[té formula for an approximation of the absolute value:
Glu—v)=|u—v|.

Thanks to the energy dissipation condition (R3) we can pass to the
limit with 0 = 0, s — oo, kK — 0.
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Existence of renormalized solutions

Theorem (Existence)

For any Fo-measurable initial value ug € L1(Q x D), there exists a
renormalized solution to the stochastic p-Laplace problem.
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L!-convergence of approximate solutions

» Let (u§)n C L2(Q x D) be an Fo-measurable sequence such
that uf — up in L2(Q x D) for n — oc.
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that uf — up in L2(Q x D) for n — oc.

> If u,, uny are strong solutions to the stochastic p-Laplace
problem with initial values ug, uf’ respectively, from the
L'-contraction principle we get

sup |[lun(t) — um(t)ll 12y < llug — ug' |l (o)
te[0,T]
a.s. in Q.

» There exists an F;-adapted stochastic process
u € LYQ;C([0, T]; LY(D))) such that

lim up,=u
n—0o0
in LY(Q; c([o, T]; LX(D))).
» We claim that this function v is a renormalized solution with

initial value wug.
14/21



Passage to the limit in the renormalized equation

For all S € C?(R) such that S’ has compact support, the sequence
of approximate solutions (u,) C L}(Q x Q7), satisfies

S(un)(t) — S(ug) — /Otdiv [S"(un)|Vun|P~2V uy,] ds

t 1 t
+/ 5"(u,,)[\Vu,,|p—§<D2] ds:/ S'(un)® dfs
0 0

forall t € [0, T], a.s. in Q.
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Passage to the limit in the renormalized equation

For all S € C?(R) such that S’ has compact support, the sequence
of approximate solutions (u,) C L}(Q x Q7), satisfies

S(un)(t) — S(ug) — /0 div [S"(un) |V Tk(un) P72V Ti(un)] ds

+/O S"(un) [IV Ti(un)|P — %qﬂ] ds=/0 S'(un)® dBs

forall t € [0, T], a.s. in Q.
&For the passage to the limit we need convergence of
div [S"(un)|V Tie(un) P2V Ti(un)] + S (un)|V Ti(un)|P

in LP'(0,t; W=LP (D) + LY(D)), a.s. in Q for n — oo and any
k > 0.
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Strong convergence of the truncated gradients

Nl

-@-...the method of [Blanchard; 1993] is to show that (up)nen
satisfies

mmmE/Q (IV Ti(un) P2V Ti(un) — |V Ti(tm) P2V Ti(um)) -
V(T(un) — Ti(um)) d(s,x) = 0.

As a consequence,

lim V Tx(u) = VTi(u)

n—oo

in LP(Q x Q7)Y for any k > 0, and we can pass to the limit with
n — oo in the renormalized equation.
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Strong convergence of the truncated gradients

Nl

-@-...the method of [Blanchard; 1993] is to show that (up)nen
satisfies

lim E/Q (IV Ti(un) P2V Ti(un) — |V Ti(tm) P2V Ti(um)) -

n,m— oo

-V (Tk(un) = Ti(um)) d(s,x) = 0.
As a consequence,

lim V Tx(u) = VTi(u)

n—oo

in LP(Q x Q7)Y for any k > 0, and we can pass to the limit with
n — oo in the renormalized equation.

&We need to find an equation for Z(u, — um)H(u,) where H, Z
are appropriate nonlinear test functions.
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Itd6 product rule for approximate solutions

For myn € N, u, uf' € L2(Q x D) Fo-measurable, t € [0, T]

t t
um(t) = ugf’ +/ Ap(um)ds +/ & dfjs
0 0

t t
un(t) = ug +/ Ap(up)ds +/ & dfs
0 0
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Itd6 product rule for approximate solutions

For myn € N, uf, uf’ € L2(Q x D) Fo-measurable, t € [0, T]
t t
um(t) = uy’ +/ Ap(um) ds Jr/ o dfs
0 0
t t
un(t) = +/ A (un) ds +/ ® dfs
0 0

= (up — um)(t) = ug — ugy’ +/0 Ap(up) — Ap(um) ds.

Since < Uy — Um, Uy, >>+= 0, we obtain
t
(un )2 (6) ~ (08— ", )2 + | () ~ Bglum), un)
0

—i—/o (Ap(un), up — Um) ds = /0 (P, up — Uum)2dBs

17/21



Itd6 product rule for approximate solutions
For m,neN, uf, ui’ € L2(Q x D) Fo-measurable, let u,, up, be
strong solutions to the p-Laplace evolution equation with initial
value ug, ug’ respectively. For Z W2>(R), Z" piecewise
continuous, Z(0) = Z'(0) = 0, H € C2(R) it follows that
(Z(un = um), H(un))2(t) = (Z(ug — ug’), H(ug))2
t
[ Boln) = Bglum). H(un)Z'(ur ~ um))
0
t
+/ (Dp(un), H' (un)Z(up — um)) ds
0
1 ! 2 g1
+ = O“H"(un)Z(up — um) dx ds
2Jo Jp
t

+/0 (CDH/(Un),Z(Un — Um))2 st
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value uf, uf' respectively. For Z € W2>(R), Z" piecewise
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t
[ o) = Bglum). H(un)Z'(ur ~ um))
0
t
b [ Baln),H (un) 2~ ) o
0
1t 21
+= O H" (up)Z(up — um) dx ds
2Jo Jo

+ /Ot(q)/-/’(u,,), Z(up — Um))2 dfs
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Markov properties in [}

» The unique renormalized solution u = u(t, r, u,) of the
stochastic p-Laplace equation starting in u, at time r € [0, T]
is a time-homogeneous Markov process with transition
semigroup

Pt(@)(x) = E@(u(t707x))? te [07 T]

for bounded, measurable ¢ : L}(D) — R.
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stochastic p-Laplace equation starting in u, at time r € [0, T]
is a time-homogeneous Markov process with transition
semigroup

Pt(@)(x) = E@(u(t707x))? te [07 T]

for bounded, measurable ¢ : L}(D) — R.

> (Pt)tefo, 1] has the Feller property.

> (Pt)tefo, 7] has the e-property: For any ¢ : [}(D) — R
bounded and Lipschitz continuous, x € L}(D) and € > 0 there
exists 0 > 0 such that

[Pe(0)(x) = Pe(@)(2)] <

forall ze B(x,d) and all 0 <t < T.
» The distribution (Px).c;1(py of u(:,0,x) is a Markov process
on C([0, T]; LX(D)).
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The stochastic p-Laplace problem with convection

Adding the first-order term
—div (F(u))

with F : R — R?, convection effects enter into the problem.
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> p> d 1, F Lipschitz continuous: The operator
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The stochastic p-Laplace problem with convection

Adding the first-order term

—div (F(u))

with F : R — R9, convection effects enter into the problem.

> p> d 1, F Lipschitz continuous: The operator
Ap(u ) div (F(u)) pseudomonotone, but not locally
monotone. Classical well-posedness results for SPDEs do not
apply.

» In this case, existence and uniqueness of strong solutions has
been obtained by time discretization and stochastic
compactness arguments [Vallet, Z.;2018+4-2019].

» General case: F(u) ¢ L*(Q x Q7), however
F(Te(u)) € LX(Q x Q) for all k > 0.
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Thank you for your attention.%
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