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The stochastic p-Laplace problem

T > 0, D ⊂ Rd is a bounded Lipschitz domain, QT := (0,T )× D.

du − div (|∇u|p−2∇u) dt = Φ dβt in Ω× QT

u = 0 on Ω× (0,T )× ∂D
u(0, ·) = u0
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I (Ω,F ,P, (Ft)t≥0, (βt)t≥0) is a stochastic basis and (βt)t≥0 a

real-valued Brownian motion.
I u0 ∈ L1(Ω× D) is F0-measurable.
I The right-hand side is an integral in the sense of Itô with
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Motivation

I Flow through porous media in a turbulent regime: A nonlinear,
p-power type version of the Darcy law may be more
appropriate [Diaz, De Thellin; 1994].

I Turbulence is often associated with the presence of
randomness. Adding random influences to the model, we also
take uncertainties and multiscale interactions into account.

I Randomness can be introduced as random external force by
adding a stochastic integral on the right-hand side of the
equation and by considering random initial values.

I The initial values may have poor regularity with respect to
both variables.
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Existence and uniqueness for L2- initial data

A unique strong solution can be obtained using classical
monotonicity methods for SPDEs [Pardoux;1975], [Krylov,
Rozovskii; 1983], [Liu, Röckner; 2015],...

Theorem
Let u0 ∈ L2(Ω× D) be F0-measurable. There exists a unique,
Ft-adapted, square-integrable stochastic process
u : Ω× [0,T ]→ L2(D) with a.s. continuous paths such that
u(0, ·) = u0, u ∈ Lp(Ω; Lp(0,T ;V )) and

u(t)− u0 −
∫ t

0
div (|∇u(s)|p−2∇u(s)) ds =

∫ t

0
Φ(s) dβs

in L2(D) for all t ∈ [0,T ], a.s. in Ω.
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∫ t

0
Φ(s) dβs

in L2(D) for all t ∈ [0,T ], a.s. in Ω.

I For p ≥ 2d
d+2 , V = W 1,p

0 (D).

I For 1 < p < 2d
d+2 , V = W 1,p

0 (D) ∩ L2(D).
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What about merely integrable initial data?

I The Itô formula yields the energy estimate

1
2
‖u(t)‖2L2(D) −

1
2
‖u0‖2L2(D) +

∫ t

0
‖∇u(s)‖pLp(D) ds

=
1
2

∫ t

0
‖Φ(s)‖2L2(D) ds +

∫ t

0

∫
D
u(s)Φ(s) dx dβs .
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What about merely integrable initial data?

I For F0-measurable u0 ∈ L2(Ω× D), the Itô formula yields the
energy estimate
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I For u0 ∈ L1(Ω× D), this estimate is not available.
I Renormalization: Generic concept of strategies to get rid of

infinities.
I Renormalized solutions: Introduced by DiPerna and Lions 1989

in the study of the Boltzmann equation.
I Main idea: Nonlinear change of unknown v = S(u), where S is

chosen in order to remove infinite quantities.
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Renormalization and truncation
For S ∈ C2(R) such that supp(S ′) ⊂ [−M,M] for some M > 0,
S is constant outside [−M,M]. Thus, S(u)(t) = S(Tk(u))(t) for
all k ≥ M.

For u ∈W 1,p
0 (D), from the chain rule for Sobolev functions it

follows that

S ′(u)∇u = S ′(u)χ{|u|≤k}∇u = S ′(u)T ′k(u)∇u = S ′(u)∇Tk(u).
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Derivation of the renormalized equation

Let u be a strong solution of the stochastic p-Laplace problem with
F0-measurable initial value u0 ∈ L1(Ω× D), i.e.,

u(t)− u0 −
∫ t

0
div (|∇u(s)|p−2∇u(s)) ds =

∫ t

0
Φ(s) dβs .

For S ∈ C2(R) with bounded derivatives, the Itô formula yields

S(u)(t)− S(u0)−
∫ t

0
div [S ′(u)|∇u|p−2∇u] ds

+

∫ t

0
S ′′(u)[|∇u|p − 1

2
|Φ|2] ds =

∫
D

ΦS ′(u) dβs

7/21



Derivation of the renormalized equation

Let u be a strong solution of the stochastic p-Laplace problem with
F0-measurable initial value u0 ∈ L1(Ω× D), i.e.,

u(t)− u0 −
∫ t

0
div (|∇u(s)|p−2∇u(s)) ds =

∫ t

0
Φ(s) dβs .

For S ∈ C2(R) with bounded derivatives, the Itô formula yields

S(u)(t)− S(u0)−
∫ t

0
div [S ′(u)|∇u|p−2∇u] ds

+

∫ t

0
S ′′(u)[|∇u|p−1

2
|Φ|2] ds =

∫ t

0
ΦS ′(u) dβs

7/21



Renormalized solution of the stochastic p-Laplace problem

The Ft-adapted stochastic process u ∈ L1(Ω; C([0,T ]; L1(D))) is a
renormalized solution with initial value u0, if and only if

8/21



Renormalized solution of the stochastic p-Laplace problem

The Ft-adapted stochastic process u ∈ L1(Ω; C([0,T ]; L1(D))) is a
renormalized solution with initial value u0, if and only if

(R1) Tk(u) ∈ Lp(Ω; Lp(0,T ;W 1,p
0 (D))) for all k > 0.

8/21



Renormalized solution of the stochastic p-Laplace problem

The Ft-adapted stochastic process u ∈ L1(Ω; C([0,T ]; L1(D))) is a
renormalized solution with initial value u0, if and only if

(R1) Tk(u) ∈ Lp(Ω; Lp(0,T ;W 1,p
0 (D))) for all k > 0.

(R2) For all S ∈ C2(R) such that S ′ has compact support

S(u)(t)− S(u0)−
∫ t

0
div [S ′(u)|∇u|p−2∇u] ds

+

∫ t

0
S ′′(u) [|∇u|p − 1

2
Φ2] ds =

∫ t

0
S ′(u)Φ dβs

in W−1,p′(D) + L1(D) for all t ∈ [0,T ], a.s. in Ω.

8/21



Renormalized solution of the stochastic p-Laplace problem

The Ft-adapted stochastic process u ∈ L1(Ω; C([0,T ]; L1(D))) is a
renormalized solution with initial value u0, if and only if

(R1) Tk(u) ∈ Lp(Ω; Lp(0,T ;W 1,p
0 (D))) for all k > 0.

(R2) For all S ∈ C2(R) such that S ′ has compact support

S(u)(t)− S(u0)−
∫ t

0
div [S ′(u)|∇u|p−2∇u] ds

+

∫ t

0
S ′′(u) [|∇u|p − 1

2
Φ2] ds =

∫ t

0
S ′(u)Φ dβs

in W−1,p′(D) + L1(D) for all t ∈ [0,T ], a.s. in Ω.
(R3) The energy dissipation condition holds true:

lim
k→∞

E
∫
{k<|u|<k+1}

|∇u|p dx dt = 0.

8/21



Renormalized solution of the stochastic p-Laplace problem

The Ft-adapted stochastic process u ∈ L1(Ω; C([0,T ]; L1(D))) is a
renormalized solution with initial value u0, if and only if

(R1) Tk(u) ∈ Lp(Ω; Lp(0,T ;W 1,p
0 (D))) for all k > 0.

(R2) For all S ∈ C2(R) such that S ′ has compact support

S(u)(t)− S(u0)−
∫ t

0
div [S ′(u)|∇Tk(u)|p−2∇Tk(u)] ds

+

∫ t

0
S ′′(u) [|∇Tk(u)|p − 1

2
Φ2] ds =

∫ t

0
S ′(u)Φ dβs

in W−1,p′(D) + L1(D) for all t ∈ [0,T ], a.s. in Ω.
(R3) The energy dissipation condition holds true:

lim
k→∞

E
∫
{k<|u|<k+1}

|∇Tk+1(u)|p dx dt = 0.

8/21



Renormalized solution of the stochastic p-Laplace problem

The Ft-adapted stochastic process u ∈ L1(Ω; C([0,T ]; L1(D))) is a
renormalized solution with initial value u0, if and only if

(R1) Tk(u) ∈ Lp(Ω; Lp(0,T ;W 1,p
0 (D))) for all k > 0.

(R2) For all S ∈ C2(R) such that S ′ has compact support

S(u)(t)− S(u0)−
∫ t

0
div [S ′(u)|∇Tk(u)|p−2∇Tk(u)] ds

+

∫ t

0
S ′′(u) [|∇Tk(u)|p − 1

2
Φ2] ds =

∫ t

0
S ′(u)Φ dβs

in W−1,p′(D) + L1(D) for all t ∈ [0,T ], a.s. in Ω.
(R3) The energy dissipation condition holds true:

lim
k→∞

E
∫
{k<|u|<k+1}

|∇Tk+1(u)|p dx dt = 0.

8/21



Renormalized solution of the stochastic p-Laplace problem

The Ft-adapted stochastic process u ∈ L1(Ω; C([0,T ]; L1(D))) is a
renormalized solution with initial value u0, if and only if

(R1) Tk(u) ∈ Lp(Ω; Lp(0,T ;W 1,p
0 (D))) for all k > 0.

(R2) For all S ∈ C2(R) such that S ′ has compact support

dS(u)(t)− div [S ′(u)|∇u|p−2∇u] dt + S ′′(u)[|∇u|p − 1
2
|Φ|2] dt

= ΦS ′(u) dβt

in W−1,p′(D) + L1(D) for all t ∈ [0,T ], a.s. in Ω.
(R3) The energy dissipation condition holds true:

lim
k→∞

E
∫
{k<|u|<k+1}

|∇u|p dx dt = 0.

8/21



Consistency of renormalized solutions

Let u be a renormalized solution with ∇u ∈ Lp(Ω× QT )d , ` > 0.

Choosing

S`(u) =

∫ u

0
h`(r) dr

in the renormalized equation (R2), for `→∞, it follows that u is a
strong solution.
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L1-contraction principle

Theorem
Let u, v be renormalized solutions with F0-measurable initial values
u0 ∈ L1(Ω× D) and v0 ∈ L1(Ω× D), respectively. Then,

sup
t∈[0,T ]

‖u(t)− v(t)‖L1(D) ≤ ‖u0 − v0‖L1(D)

a.s. in Ω.

Remark: As a consequence, renormalized solutions are unique.
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Idea of the proof:

Let u, v be renormalized solutions with initial values u0, v0.
Subtracting the renormalized equation (R2) for v from the one for
u we obtain

d [S(u)− S(v)]− div [S ′(u)|∇u|p−2∇u − S ′(v)|∇v |p−2∇v ] dt

+ S ′′(u)|∇u|p − S ′′(v)|∇v |p dt − 1
2

Φ2(S ′′(u)− S ′′(v)) dt

= Φ(S ′(u)− S ′(v)) dβt .
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Idea of the proof:

Let u, v be renormalized solutions with initial values u0, v0.
Subtracting the renormalized equation (R2) for v from the one for
u we obtain

d |u − v | = something ≤ 0

Formally, we choose S(r) = r and use the Itô formula for the
absolute value.
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Idea of the proof [Blanchard, Murat, Redwane; 2001]:

For s, σ > 0, we choose S(r) = T σ
s (r) :=

∫ r
0 (T σ

s )′(τ) dτ with
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Idea of the proof [Blanchard, Murat, Redwane; 2001]:

Itô formula for an approximation of the absolute value:

G (u − v) = |u − v |.

Thanks to the energy dissipation condition (R3) we can pass to the
limit with σ → 0, s →∞, k → 0.
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Existence of renormalized solutions

Theorem (Existence)
For any F0-measurable initial value u0 ∈ L1(Ω× D), there exists a
renormalized solution to the stochastic p-Laplace problem.
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L1-convergence of approximate solutions

I Let (un0)n ⊂ L2(Ω× D) be an F0-measurable sequence such
that un0 → u0 in L1(Ω× D) for n→∞.

I If un, um are strong solutions to the stochastic p-Laplace
problem with initial values un0 , u

m
0 respectively, from the

L1-contraction principle we get

sup
t∈[0,T ]

‖un(t)− um(t)‖L1(D) ≤ ‖un0 − um0 ‖L1(D)

a.s. in Ω.
I There exists an Ft-adapted stochastic process

u ∈ L1(Ω; C([0,T ]; L1(D))) such that

lim
n→∞

un = u

in L1(Ω; C([0,T ]; L1(D))).
I We claim that this function u is a renormalized solution with

initial value u0.
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Passage to the limit in the renormalized equation

For all S ∈ C2(R) such that S ′ has compact support, the sequence
of approximate solutions (un) ⊂ L1(Ω× QT ), satisfies

S(un)(t)− S(un0)−
∫ t

0
div [S ′(un)|∇un|p−2∇un] ds

+

∫ t

0
S ′′(un) [|∇un|p −

1
2

Φ2] ds =

∫ t

0
S ′(un)Φ dβs

for all t ∈ [0,T ], a.s. in Ω.
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S ′′(un) [|∇Tk(un)|p − 1

2
Φ2] ds =

∫ t

0
S ′(un)Φ dβs

for all t ∈ [0,T ], a.s. in Ω.

For the passage to the limit we need convergence of

div [S ′(un)|∇Tk(un)|p−2∇Tk(un)] + S ′′(un)|∇Tk(un)|p

in Lp
′
(0, t;W−1,p′(D) + L1(D)), a.s. in Ω for n→∞ and any

k > 0.
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Strong convergence of the truncated gradients

...the method of [Blanchard; 1993] is to show that (un)n∈N
satisfies

lim
n,m→∞

E
∫
QT

(
|∇Tk(un)|p−2∇Tk(un)− |∇Tk(um)|p−2∇Tk(um)

)
·

· ∇(Tk(un)− Tk(um)) d(s, x) = 0.

As a consequence,

lim
n→∞

∇Tk(un) = ∇Tk(u)

in Lp(Ω× QT )d for any k > 0, and we can pass to the limit with
n→∞ in the renormalized equation.

We need to find an equation for Z (un − um)H(un) where H, Z
are appropriate nonlinear test functions.
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Itô product rule for approximate solutions

For m, n ∈ N, un0 , um0 ∈ L2(Ω× D) F0-measurable, t ∈ [0,T ]

um(t) = um0 +

∫ t

0
∆p(um) ds +

∫ t

0
Φ dβs

un(t) = un0 +

∫ t

0
∆p(un) ds +

∫ t

0
Φ dβs
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0
∆p(un)−∆p(um) ds.

Since � un − um, un �t= 0, we obtain

(un − um, un)2 (t)− (un0 − um0 , u
n
0)2 +

∫ t

0
〈∆p(un)−∆p(um), un〉 ds

+

∫ t

0
〈∆p(un), un − um〉 ds =

∫ t

0
(Φ, un − um)2 dβs
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Itô product rule for approximate solutions

For m, n ∈ N, un0 , um0 ∈ L2(Ω× D) F0-measurable, let un, um be
strong solutions to the p-Laplace evolution equation with initial
value un0 , u

m
0 respectively. For Z ∈W 2,∞(R), Z ′′ piecewise

continuous, Z (0) = Z ′(0) = 0, H ∈ C2
b(R) it follows that

(Z (un − um),H(un))2(t) = (Z (un0 − um0 ),H(un0))2

+

∫ t

0
〈∆p(un)−∆p(um),H(un)Z ′(un − um)〉 ds

+

∫ t

0
〈∆p(un),H ′(un)Z (un − um)〉 ds

+
1
2

∫ t

0

∫
D

Φ2H ′′(un)Z (un − um) dx ds

+

∫ t

0
(ΦH ′(un),Z (un − um))2 dβs
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Markov properties in L1

I The unique renormalized solution u = u(t, r , ur ) of the
stochastic p-Laplace equation starting in ur at time r ∈ [0,T ]
is a time-homogeneous Markov process with transition
semigroup

Pt(ϕ)(x) := Eϕ(u(t, 0, x)), t ∈ [0,T ]

for bounded, measurable ϕ : L1(D)→ R.

I (Pt)t∈[0,T ] has the Feller property.
I (Pt)t∈[0,T ] has the e-property : For any ϕ : L1(D)→ R

bounded and Lipschitz continuous, x ∈ L1(D) and ε > 0 there
exists δ > 0 such that

|Pt(ϕ)(x)− Pt(ϕ)(z)| < ε

for all z ∈ B(x , δ) and all 0 ≤ t ≤ T .
I The distribution (Px)x∈L1(D) of u(·, 0, x) is a Markov process

on C([0,T ]; L1(D)).
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The stochastic p-Laplace problem with convection

Adding the first-order term

− div (F (u))

with F : R→ Rd , convection effects enter into the problem.

I p > 2d
d+1 , F Lipschitz continuous: The operator

∆p(u)− div (F (u)) pseudomonotone, but not locally
monotone. Classical well-posedness results for SPDEs do not
apply.

I In this case, existence and uniqueness of strong solutions has
been obtained by time discretization and stochastic
compactness arguments [Vallet, Z.;2018+2019].

I General case: F (u) /∈ L1(Ω× QT ), however
F (Tk(u)) ∈ L1(Ω× QT ) for all k > 0.
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Thank you for your attention.
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