Pre-feasibility Study of Astronomical Data Archive Systems Powered by Public Cloud Computing and Hadoop Hive

Satoshi Eguchi

1Department of Applied Physics, Faculty of Science, Fukuoka University, Fukuoka, Fukuoka Prefecture, Japan; satoshieguchi@fukuoka-u.ac.jp

Abstract. The size of astronomical observational data is increasing yearly. For example, while Atacama Large Millimeter/submillimeter Array (ALMA) is expected to generate 200 TB raw data every year, Large Synoptic Survey Telescope (LSST) will produce 15 TB raw data every night (Stoehr et al. 2014). Though high performance computing (HPC) systems are required to process such big data, they are so expensive and occupy large physical spaces, that is, the systems are hardly available except for some large project teams. Hence sharing HPC resources together with huge observational data over the Internet will be common in the next decade. On the other hand, alternative ways to handle relative large astronomical data at low cost will be in demand. From this aspect, I note public cloud computing and see if it is applicable to astronomical data. In this paper, I focus on Hadoop, which is an open-source software framework for distribute file system and data processing, and Hive, which is a SQL-like distributed database system running on Hadoop clusters; Hadoop is designed to run on a cluster consisting of a large number of cheap standard PCs, and hardware failures are automatically recovered by re-execute of the failed jobs on other nodes. I report the results of the benchmarks and performance optimizations in cloud computing environment.

1. Introduction

The size of astronomical observational data has been increasing year by year. For example, while Atacama Large Millimeter/submillimeter Array (ALMA) is expected to generate 200 TB raw data every year, Large Synoptic Survey Telescope (LSST) will produce 15 TB raw data every night 1. Though high performance computing (HPC) systems are required to process such big data, they are so expensive and occupy large physical spaces, that is, the systems are hardly available except for some large project teams. Hence sharing HPC resources together with huge observational data over the Internet will be common in the next decade. On the other hand, alternative ways to handle relative large astronomical data at low cost will be in demand. From this aspect, I note public cloud computing and see if it is applicable to astronomical data. In this paper, I focus on Hadoop, which is an open-source software framework for distribute file system and data processing, and Hive, which is a SQL-like distributed database system running on Hadoop clusters; Hadoop is designed to run on a cluster consisting of a large number of cheap standard PCs, and hardware failures are automatically recovered by re-execute of the failed jobs on other nodes. I report the results of the benchmarks and performance optimizations.

1https://www.lsst.org/sites/default/files/docs/sciencebook/SB_Whole.pdf
2. Challenges in Hadoop and Hive

Hadoop and Hive are designed to process a set of moderate large files in parallel; a massive number of very small files exhaust memory resources to manage their metadata on HDFS, which is the native distributed file system of Hadoop. On the other hand, a small number of huge files are inefficient since they lead to very frequent data transportation between nodes over the network and intensive file I/O, and remarkably reduce a degree of parallelism.

Different from wide-spread standard RDBMSs, Hive does not manage datasets by indexes. Instead, datasets can be organized by “partitions”, which correspond to directories on HDFS and seem to be one of keys of a table. Files to be read or processed in a Hive query are narrowed down by specifying the values of the partitions.

There are two ways to get Hadoop clusters in cloud computing: Virtual Private Server (VPS) and Infrastructure as a Service (IaaS). In the former case, options of configurations of virtual hardware are quite limited, and a Virtual Machine (VM) can be created only from a VM image with a pre-installed operating system provided by the service provider; users cannot instantiate a VM from their own images. In addition, to build a Hadoop cluster is time consuming since the users need to install and setup the software packages by hand on each VM instance. On the other hand, in the latter case, a wide variety of hardware configurations are available, and users can also create a VM instance from their own images. Furthermore, we can construct a Hadoop and Hive cluster by one command in case of Amazon Elastic MapReduce (EMR).

3. Strategies of benchmarking

To evaluate applicability of VPS and IaaS to astronomical data, I develop a simple benchmark program in Java, which connects to Hive via the JDBC driver. Data files for 2MASS Catalog Server Kit\(^2\) are used as test data. I add two columns below to the dataset: healpix_id, a HEALPix ID with \(N_{\text{pix}}^{\text{side}} = 2^{16}\) (fixed) of each source position, and healpix_partition, a HEALPix ID of a source with \(N_{\text{pix}}^{\text{part}} = 2^3, 2^4, \ldots \). Firstly, querying positions and search radii (\(5'' - 5''\)) are randomly selected with uniform distributions by Mersenne Twister. At this stage, the random seed is fixed at a certain value. Secondly, the range of healpix_partition is calculated by the HEALPix library implemented in Java. Thirdly, the angular distances are computed for all the rows in the given healpix_partition range based on Yamauchi (2011). Lastly, the average magnitudes of J, H, K-bands are calculated with the built-in function \(\text{AVG()}\) in Hive for the sources within the given search radius. These procedures essentially emulate an use case to cut out desired data cubes from \(\geq 3\)-dimensional high resolution all-sky images.

\(^2\)http://www.ir.isas.jaxa.jp/~cyamauch/2masskit/

\(^3\)The number of pixels are given by \(N_{\text{pix}}^{\text{part}} = 12N_{\text{pix}}^{\text{side}}\).
4. Results

4.1. VPS

A Hadoop and Hive cluster consisting of 1 NameNode (master node) and 7 DataNodes (slave nodes) by utilizing “Small Plan” provided by GMO CLOUD K.K., which is a Japanese IT company. Each node has 4 CPU cores, 4 GB RAM, and 200 GB HDD, costing about $230 annually. Pure Apache Hadoop and Hive distributions are used, that is, Tez is not installed. The construction of a partition tree is performed on a workstation and transported to the cluster via the SSH protocol due to the small memory size of the nodes and a restriction of our firewall. Figure 1 represents the distributions of searching time with $N_{\text{partition}}^{\text{size}} = 2^3$ measured on different days, suggesting that the performance of the cluster differs day by day.

![Figure 1](image1.png)

Figure 1. The searching time distributions of the VPS cluster measured on different days.

4.2. Amazon EMR as an IaaS solution

As an IaaS solution, I use Amazon EMR. Clusters with 1 NameNode and 3 DataNodes are created with m3.xlarge instances, each of which has 4 CPU cores and 15 GB RAM and costs $0.385 an hour, every time when a new set of the benchmark is started. Physical files of the database are stored on Amazon S3, which is a cloud storage service provided by Amazon and can be accessed seamlessly from EMR instances, since files on HDFS are lost when the cluster is terminated. Note that the VM instances and database files locate in the Tokyo region. At this stage, Tez is enabled.

The left and right of Figure 2 represent the distributions of searching time with $N_{\text{partition}}^{\text{side}} = 2^3$ executed on different cluster instances, and the dependence of mean searching time on $N_{\text{partition}}^{\text{side}}$, respectively; the former suggests that no difference between the instances are observed, and the latter shows that mean searching time decreases as $N_{\text{partition}}^{\text{side}}$ increases. $N_{\text{partition}}^{\text{side}} \geq 2^7$ are not measured due to insufficient memory. Further investigation reveals that a typical query is distributed to only 3 nodes since the range of healpix_partition is ≤ 3 for $N_{\text{partition}}^{\text{side}} \leq 2^6$. However, a wide range of healpix_partition is found to make the time required to schedule at the initialization stage much longer.
4.3. Nested partitions on EMR

The introduction of healpix_id modulo 16 (≡healpix_mod) into the $N_{\text{side}} = 2^3$ case and partitioning the dataset into the pair of (healpix_partition, healpix_mode) reduce an effective file size of one partition to that in the $N_{\text{side}} = 2^5$ case. Hence this approach is expected to make the searching time in the $N_{\text{side}} = 2^3$ case same as that in the $N_{\text{side}} = 2^5$ case. However, an application of this method to EMR does not change the searching time at all.

5. Future work

□ Identification of parameters controlling the degree of parallelism
□ Checking if a larger number of partitions are possible

Acknowledgments. This work is supported by JSPS KAKENHI Grant Numbers JP15K17501.

References

Yamauchi, C. 2011, PASP, 123, 1324. 1110.4206