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前回の復習前回の復習前回の復習前回の復習: 電子計測器電子計測器電子計測器電子計測器:

(アナログアナログアナログアナログ)オシロスコープオシロスコープオシロスコープオシロスコープ:

• X軸に周期的なのこぎり波を入力
し、Y軸に観測したい電気信号を
入力して、ブラウン管(CRT)上に
その波形を映し出して観測する。

• 直流から数GHzまでの帯域の波
形観測が可能である。

垂直
増幅器

トリガ
抽出回路

のこぎり波
発生回路

水平
増幅器

入力信号
ブラウン
管
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ディジタルオシロスコープディジタルオシロスコープディジタルオシロスコープディジタルオシロスコープ:

一定の時間間隔でアナログ信号をサ
ンプリングしてディジタルに変換する。
それを波形データにしてディスプレイ
に表示。同期加算技術でS/N比の改

善も可能。トリガ以前の波形を観察で
きるプリトリガ機能を持つものもある。
現在ではほぼすべてこのタイプ。

ディジタルオシロスコープの原理（参考書より転載）

前回の復習前回の復習前回の復習前回の復習:
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ロジックアナライザロジックアナライザロジックアナライザロジックアナライザ:

ディジタル回路の
デバッグ等に利用
される。多チャンネ
ル(数10～数100)の

ロジック信号波形と、
それを閾値で’0’

と’1’に2値化した値

を同時に観測でき
る。また、信号を8

ビット幅等のバスの
データとして読み
取ってバイトやワー
ド単位で表示させ
ることもできる。

前回の復習前回の復習前回の復習前回の復習:
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前回の復習前回の復習前回の復習前回の復習: サンプリングオシロスコープサンプリングオシロスコープサンプリングオシロスコープサンプリングオシロスコープ: Δtでのサンプリ
ングが困難なとき、�+Δtあるいはn�+Δt (�は整数）のサンプ
リングによって原波形をΔt毎にサンプリングした場合と等価
な観測結果を得る。

ミックスド・シグナル・オシロスコープミックスド・シグナル・オシロスコープミックスド・シグナル・オシロスコープミックスド・シグナル・オシロスコープ: アナログ信号とデジタ

ル信号の両方を表示でき、ロジック・アナライザの機能を一
部併せ持つデジタルオシロスコープ。

スペクトラムアナライザースペクトラムアナライザースペクトラムアナライザースペクトラムアナライザー:

時間波形の信号を高速フーリエ変換することで、信号の周
波数分布を求めることができる。

ネットワークアナライザネットワークアナライザネットワークアナライザネットワークアナライザ: 高周波電子回路網の通過・反射

電力の周波数特性を測定する測定器。回路のインピーダン
ス整合の確認や伝送ケーブル内での反射箇所の特定など
に利用される。
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離散フーリエ変換離散フーリエ変換離散フーリエ変換離散フーリエ変換(Discrete Fourier Transform: DFT):

高速フーリエ変換 (Fast Fourier Transform: FFT)の下準備

t0   t1   t2   t3

0
tN-3 tN-2tN-1tN

T

t

f0 f1 f2 f3 fN-3 fN-2 fN-1

区間[0,T ]をN分割した各点tlで、ある関数 f (t)の関数値flが
サンプリングされているとする。つまり、

�� ≡ � �� = � �� 	⁄ , � = 0, 1, 2, ⋯ , 	 − 1
この時、関数 f (t)に似せた擬似的な関数 fs(t)をデルタ関数
(付録1参照)を使って、
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と定義する(Cは定数)。この関数 fs(t)を0からTまで積分して
N→∞の極限を取ったものが、元の関数 f (t)を0からTまで
積分したものと等しくなるように定数C を定める。
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ここで、lT/Nは区間[0,T ]内にあるので、上式の最後の積分
はδ関数の性質(12.F2)から1となり、
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となる。ここで、和を積分に変換する以下の公式を使うと、
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となる。これが、関数 f (t)を0からTまで積分したものと等し
いので、
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となる。次に、関数 fs(t)を周期Tの周期関数とみなして、複
素フーリエ級数展開すると、工業数学の公式(付録2)から
展開係数cmは、(i: 虚数単位)
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となる。ちなみに、この展開係数cmは、
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#$.� = 1
	 � ��%�*+&
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となり、N個ズレると元に戻る。つまり周期N を持つ。一方、
展開係数cmを用いて、以下の逆フーリエ級数を計算してみ
ると(kは0 ~ N−1の範囲内の任意の自然数)、
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となり、元のサンプリング値 fkが得られる。
以上をまとめると、離散逆フーリエ変換とフーリエ変換は、
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となる。(注意注意注意注意: 名前は変換でも、実際は級数展開)

また、上記の計算過程から、離散フーリエ変換の基底
関数の直交性は、(δk,l: クロネッカーのデルタ)
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まとめると、
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となる。
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離散フーリエ変換の性質:

離散フーリエ変換でも、工業数学等で学習したフーリエ級
数展開の性質は成り立つ。以下にいくつかの代表的な例
を示す。(glのフーリエ級数展開の展開係数をdmとする)
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線形性:

時間の
シフト:
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周波数の
シフト:

合成積:

なので、
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なので(最後は展開係数の周期性を使った)、
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パーシバルの等式:
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離散フーリエ変換の行列表示離散フーリエ変換の行列表示離散フーリエ変換の行列表示離散フーリエ変換の行列表示: 下記の様にWNを定義す
ると、離散フーリエ変換(12.2),(12.3)式は、
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となる。従って、離散フーリエ変換は行列を使って、
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(12.13)、と表される。同様に、離散逆フーリエ変換は、
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(12.14)、と表される。
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高速フーリエ変換高速フーリエ変換高速フーリエ変換高速フーリエ変換 (Fast Fourier Transform: FFT):

離散フーリエ変換を行うには(12.13)式、逆フーリエ変換を
行うには(12.14)式を計算すれば良い。これらの行列計算で
は、通常サンプリング数 N の2乗(N 2)回の掛け算を行う必
要がある。
しかし、サンプリング数Nが2の累乗数(2, 4, 8, 16, …)の時

は、この行列計算の計算量を大幅に減らすことができる。
この方法を高速フーリエ変換(FFT)という。FFTを使うと、電
子計算機で高速に離散フーリエ変換を行うことができる。

簡単のために以下では、N=8として説明する。今、サンプ
リング値(f0, f1, f2, f3, f4, f5, f6, f7)は既に分かっているとして、
展開係数(c0, c1, c2, c3, c4, c5, c6, c7)を求めるものとする。
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行列(12.13)式は、

となる。また、

なので、W8の8乗以上のものは全て8乗未満にできて、
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となる。ここで、偶数行(0,2,4,6)を見ると、列の左右で同じ並
びになっている。一方、奇数行(1,3,5,7)をみると、左側に
W8

4を掛けたものが右側になっている。(W8
8 =1に注意)

従って、この行列の偶数行と奇数行を、2つの別々の行列
に分割すると、 22
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と分けられる。この2つの行列も、また左右で対称性がある。

具体的にいうと、上の行列の偶数行は左右で同じ、奇数行
は左側にW8

4を掛けたものが右側になっている。一方、下
の行列の偶数行は左側にW8

2を掛けたものが右側に、奇数
行は左側にW8

6を掛けたものが右側になっている。 23
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従って、また行列の偶数行と奇数行をそれぞれ分割して
別々の行列にすると、
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と4つの行列(12.15)式にできる。この(12.15)式を8×8行列
の3つの掛け算で表すと、以下の様になる。



5

(12.15)式を
そのまま
8×8行列
にしたもの 8

���L�*�M���N�O�P

=

1 1 0 0 0 0 0 0
1 HQL 0 0 0 0 0 0
0 0 1 HQ* 0 0 0 0
0 0 1 HQM 0 0 0 0
0 0 0 0 1 HQ� 0 0
0 0 0 0 1 HQN 0 0
0 0 0 0 0 0 1 HQO
0 0 0 0 0 0 1 HQP

×

�� + �L + �* + �M�� + �N + �O + �P
�� + �L + HQL �* + �M
�� + �N + HQL �O + �P

�� + HQL�L + HQ* �* + HQL�M
�� + HQL�N + HQ* �O + HQL�P
�� + HQL�L + HQM �* + HQL�M
�� + HQL�N + HQM �O + HQL�P

,

行を並び
替えた。

8

�����*�O�L�N�M�P

=

1 1 0 0 0 0 0 0
0 0 0 0 1 HQ� 0 0
0 0 1 HQ* 0 0 0 0
0 0 0 0 0 0 1 HQO
1 HQL 0 0 0 0 0 0
0 0 0 0 1 HQN 0 0
0 0 1 HQM 0 0 0 0
0 0 0 0 0 0 1 HQP

×

�� + �L + �* + �M�� + �N + �O + �P
�� + �L + HQL �* + �M
�� + �N + HQL �O + �P

�� + HQL�L + HQ* �* + HQL�M
�� + HQL�N + HQ* �O + HQL�P
�� + HQL�L + HQM �* + HQL�M
�� + HQL�N + HQM �O + HQL�P

,

列も並び
替えた。

8

�����*�O�L�N�M�P

=

1 0 0 0 1 0 0 0
0 1 0 0 0 HQ� 0 0
0 0 1 0 0 0 HQ* 0
0 0 0 1 0 0 0 HQO
1 0 0 0 HQL 0 0 0
0 1 0 0 0 HQN 0 0
0 0 1 0 0 0 HQM 0
0 0 0 1 0 0 0 HQP

×

�� + �L + �* + �M
�� + HQL�L + HQ* �* + HQL�M

�� + �L + HQL �* + �M
�� + HQL�L + HQM �* + HQL�M�� + �N + �O + �P
�� + HQL�N + HQ* �O + HQL�P

�� + �N + HQL �O + �P
�� + HQL�N + HQM �O + HQL�P

,

�� + �L + �* + �M
�� + HQL�L + HQ* �* + HQL�M

�� + �L + HQL �* + �M
�� + HQL�L + HQM �* + HQL�M�� + �N + �O + �P
�� + HQL�N + HQ* �O + HQL�P

�� + �N + HQL �O + �P
�� + HQL�N + HQM �O + HQL�P

=

1 0 1 0 0 0 0 0
0 1 0 HQ* 0 0 0 0
1 0 HQL 0 0 0 0 0
0 1 0 HQM 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 HQ*
0 0 0 0 1 0 HQ* 0
0 0 0 0 0 1 0 HQM

�� + �L
�� + HQL�L�* + �M
�* + HQL�M�� + �N
�� + HQL�N�O + �P
�O + HQL�P

,

最後の
行列を
掛け算
で表す。

もう一回最後の行列を掛け算で表す。�� + �L
�� + HQL�L�* + �M
�* + HQL�M�� + �N
�� + HQL�N�O + �P
�O + HQL�P

=

1 1 0 0 0 0 0 0
1 HQL 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 HQL 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 HQL 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 HQL

���L�*�M���N�O�P

,
8

�����*�O�L�N�M�P

=

1 0 0 0 1 0 0 0
0 1 0 0 0 HQ� 0 0
0 0 1 0 0 0 HQ* 0
0 0 0 1 0 0 0 HQO
1 0 0 0 HQL 0 0 0
0 1 0 0 0 HQN 0 0
0 0 1 0 0 0 HQM 0
0 0 0 1 0 0 0 HQP

×

 

1 0 1 0 0 0 0 0
0 1 0 HQ* 0 0 0 0
1 0 HQL 0 0 0 0 0
0 1 0 HQM 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 HQ*
0 0 0 0 1 0 HQL 0
0 0 0 0 0 1 0 HQM

×

まとめると、



6

1 1 0 0 0 0 0 0
1 HQL 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 HQL 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 HQL 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 HQL

���L�*�M���N�O�P

, 12.16

となる。この行列計算を図示すると、次のバタフライ演算図
になる。

バタフライ演算図バタフライ演算図バタフライ演算図バタフライ演算図：
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最初の行列 次の行列 最後の行列
掛け算 掛け算 掛け算

最終的に、高速フーリエ変換によって、(複素数の)掛け算
が、8×8=64回から17回まで減少する。一般にN個のサン
プリング数の場合には、計算量はN 2からN log2N 程度に減
少する。
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次回の予告次回の予告次回の予告次回の予告: 光計測とその応用

人間の目より
も細かく波長
ごとの成分に
分割する。
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(付録2) 複素フーリエ級数展開の式複素フーリエ級数展開の式複素フーリエ級数展開の式複素フーリエ級数展開の式:

複素フーリエ級数展開の展開係数cnは、

(付録1) ディラック(Dirac)のデルタ関数の性質

ディラックのデルタ関数は、クロネッカーのデルタを連続変
数に拡張したものと言える。
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