- K. Kuwae and Y. Sakurai,
Lower N-weighted Ricci curvature bound with ε-range and displacement convexity of entropies,
J. Topol. Anal. 17 (2025), no. 1, 105--130. - B. Güneysu and K Kuwae,
Locally convex aspects of the Kato and the Dynkin classes on manifolds,
Illinois J. Math. 68 (2024), no. 4, 685--702. - K. Kuwae,
(1, p) -Sobolev spaces based on strongly local Dirichlet forms,
Math. Nachr. 297 (2024), no. 10, 3723--3740. - K. Kuwae, S. Li, X.-D. Li and Y. Sakurai,
Liouville theorem for V-harmonic maps under non-negative (m, V)-Ricci curvature for non-positive m,
Stochastic Process. Appl. 168 (2024), Paper No. 104270, 25 pp. - D. Kim, P. Kim and K. Kuwae,
Stability of estimates for fundamental solutions under Feynman-Kac perturbations for symmetric Markov processes,
J. Math. Soc. Japan 75 (2023), no. 2, 527--572. - K. Kuwae and Y. Sakurai,
Comparison geometry of manifolds with boundary under lower N- weighted Ricci curvature bounds with ε-range,
J. Math. Soc. Japan 75 (2023), no. 1, 151--172. - S. Kusuoka, K. Kuwae and K. Matsuura,
Equivalence of the strong Feller properties of analytic semigroups and associated resolvents,
Springer Proc. Math. Stat., 394, Springer, Singapore, 2022, 279--307. - K. Kuwae and T. Mori,
Lp-Kato class measures for symmetric Markov processes under heat kernel estimates,
Math. Ann. 383 (2022), no. 3-4, 999--1031. - H. Nakajima and T. Shioya,
Convergence of group actions in metric measure geometry,
Comm. Anal. Geom. 32 (2024), no. 5, 1375--1401. - K. Nagano, T. Shioya and T. Yamaguchi,
Two-dimensional metric spaces with curvature bounded above I,
Geom. Topol. 28 (2024), no. 7, 3023--3093. - D. Kazukawa and T. Shioya,
High-dimensional ellipsoids converge to Gaussian spaces,
J. Math. Soc. Japan 76 (2024), no. 2, 473--501. - D. Kazukawa, H. Nakajima and T. Shioya,
Topological aspects of the space of metric measure spaces,
Geom. Dedicata 218 (2024), no. 3, Paper No. 68, 28 pp. - H. Nakajima and T. Shioya,
A natural compactification of the Gromov-Hausdorff space,
Geom. Dedicata 218 (2024), no. 1, Paper No. 10, 18 pp. - T. Shioya,
Metric measure geometry: an approach to high-dimensional and infinite-dimensional spaces,
Sugaku Expositions 35 (2022), no. 2, 221--241. - M. Braun and S. Ohta,
Optimal transport and timelike lower Ricci curvature bounds on Finsler spacetimes,
Trans. Amer. Math. Soc. 377 (2024), no. 5, 3529--3576. - S. Ohta,
Barycenters and a law of large numbers in Gromov hyperbolic spaces,
Rev. Mat. Iberoam. 40 (2024), no. 3, 1185--1206. - C. H. Mai and S. Ohta,
Quantitative estimates for the Bakry-Ledoux isoperimetric inequality II,
Bull. Lond. Math. Soc. 55 (2023), no. 1, 224--233. - Y. Lu, E. Minguzzi and S. Ohta,
Geometry of weighted Lorentz--Finsler manifolds II: A splitting theorem,
Internat. J. Math. 34 (2023), no. 1, Paper No. 2350002, 29 pp. - S. Ohta,
A semigroup approach to Finsler geometry: Bakry-Ledoux's isoperimetric inequality,
Comm. Anal. Geom. 30 (2022), no. 10, 2347--2387. - Y. Lu, E. Minguzzi and S. Ohta,
Comparison theorems on weighted Finsler manifolds and spacetimes with ε-range,
Anal. Geom. Metr. Spaces 10 (2022), no. 1, 1--30. - S. Ishiwata and H. Kawabi,
A graph discretized approximation of semigroups for di"usion with drift and killing on a complete Riemannian manifold,
Math. Ann. 390 (2024), no. 2, 2459--2495. - A. Grigor'yan, S. Ishiwata and L. Saloff-Coste,
Poincaré constant on manifolds with ends,
Proc. Lond. Math. Soc. (3) 126 (2023), no. 6, 1961--2012. - K. Kunikawa and Y. Sakurai,
Hamilton type entropy formula along the Ricci flow on surfaces with boundary,
Comm. Anal. Geom. 31 (2023), no. 7, 1655--1668. - R. Ozawa, Y. Sakurai and T. Yamada,
Maximal diameter theorem for directed graphs of positive Ricci curvature,
Comm. Anal. Geom. 31 (2023), no. 5, 1275--1298. - R. Ozawa, Y. Sakurai and T. Yamada,
Heat flow and concentration of measure on directed graphs with a lower Ricci curvature bound,
Potential Anal. 59 (2023), no. 3, 955--969. - Y. Sakurai,
Dirichlet problem for harmonic maps from strongly rectifiable spaces into regular balls in CAT(1) spaces,
Ann. Global Anal. Geom. 64 (2023), no. 3, Paper No. 19, 18 pp. - K. Kunikawa and Y. Sakurai,
Yau and Souplet-Zhang type gradient estimates on Riemannian manifolds with boundary under Dirichlet boundary condition,
Proc. Amer. Math. Soc. 150 (2022), no. 4, 1767--1777. - S. Esaki, D. Kazukawa and A. Mitsuishi,
Invariants for Gromov's pyramids and their applications Summary,
Adv. Math. 442 (2024), Paper No. 109583, 70 pp. - S. Esaki and H. Tanemura,
Stochastic differential equations for infinite particle systems of jump type with long range interactions,
J. Math. Soc. Japan 76 (2024), no. 1, 283--336.