福岡大学最適輸送理論とマルコフ過程による測度距離空間の解析学

研究成果- achievement -

  1. K. Kuwae and Y. Sakurai,
    Lower N-weighted Ricci curvature bound with ε-range and displacement convexity of entropies,
    J. Topol. Anal. 17 (2025), no. 1, 105--130.
  2. B. Güneysu and K Kuwae,
    Locally convex aspects of the Kato and the Dynkin classes on manifolds,
    Illinois J. Math. 68 (2024), no. 4, 685--702.
  3. K. Kuwae,
    (1, p) -Sobolev spaces based on strongly local Dirichlet forms,
    Math. Nachr. 297 (2024), no. 10, 3723--3740.
  4. K. Kuwae, S. Li, X.-D. Li and Y. Sakurai,
    Liouville theorem for V-harmonic maps under non-negative (m, V)-Ricci curvature for non-positive m,
    Stochastic Process. Appl. 168 (2024), Paper No. 104270, 25 pp.
  5. D. Kim, P. Kim and K. Kuwae,
    Stability of estimates for fundamental solutions under Feynman-Kac perturbations for symmetric Markov processes,
    J. Math. Soc. Japan 75 (2023), no. 2, 527--572.
  6. K. Kuwae and Y. Sakurai,
    Comparison geometry of manifolds with boundary under lower N- weighted Ricci curvature bounds with ε-range,
    J. Math. Soc. Japan 75 (2023), no. 1, 151--172.
  7. S. Kusuoka, K. Kuwae and K. Matsuura,
    Equivalence of the strong Feller properties of analytic semigroups and associated resolvents,
    Springer Proc. Math. Stat., 394, Springer, Singapore, 2022, 279--307.
  8. K. Kuwae and T. Mori,
    Lp-Kato class measures for symmetric Markov processes under heat kernel estimates,
    Math. Ann. 383 (2022), no. 3-4, 999--1031.
  9. H. Nakajima and T. Shioya,
    Convergence of group actions in metric measure geometry,
    Comm. Anal. Geom. 32 (2024), no. 5, 1375--1401.
  10. K. Nagano, T. Shioya and T. Yamaguchi,
    Two-dimensional metric spaces with curvature bounded above I,
    Geom. Topol. 28 (2024), no. 7, 3023--3093.
  11. D. Kazukawa and T. Shioya,
    High-dimensional ellipsoids converge to Gaussian spaces,
    J. Math. Soc. Japan 76 (2024), no. 2, 473--501.
  12. D. Kazukawa, H. Nakajima and T. Shioya,
    Topological aspects of the space of metric measure spaces,
    Geom. Dedicata 218 (2024), no. 3, Paper No. 68, 28 pp.
  13. H. Nakajima and T. Shioya,
    A natural compactification of the Gromov-Hausdorff space,
    Geom. Dedicata 218 (2024), no. 1, Paper No. 10, 18 pp.
  14. T. Shioya,
    Metric measure geometry: an approach to high-dimensional and infinite-dimensional spaces,
    Sugaku Expositions 35 (2022), no. 2, 221--241.
  15. M. Braun and S. Ohta,
    Optimal transport and timelike lower Ricci curvature bounds on Finsler spacetimes,
    Trans. Amer. Math. Soc. 377 (2024), no. 5, 3529--3576.
  16. S. Ohta,
    Barycenters and a law of large numbers in Gromov hyperbolic spaces,
    Rev. Mat. Iberoam. 40 (2024), no. 3, 1185--1206.
  17. C. H. Mai and S. Ohta,
    Quantitative estimates for the Bakry-Ledoux isoperimetric inequality II,
    Bull. Lond. Math. Soc. 55 (2023), no. 1, 224--233.
  18. Y. Lu, E. Minguzzi and S. Ohta,
    Geometry of weighted Lorentz--Finsler manifolds II: A splitting theorem,
    Internat. J. Math. 34 (2023), no. 1, Paper No. 2350002, 29 pp.
  19. S. Ohta,
    A semigroup approach to Finsler geometry: Bakry-Ledoux's isoperimetric inequality,
    Comm. Anal. Geom. 30 (2022), no. 10, 2347--2387.
  20. Y. Lu, E. Minguzzi and S. Ohta,
    Comparison theorems on weighted Finsler manifolds and spacetimes with ε-range,
    Anal. Geom. Metr. Spaces 10 (2022), no. 1, 1--30.
  21. S. Ishiwata and H. Kawabi,
    A graph discretized approximation of semigroups for di"usion with drift and killing on a complete Riemannian manifold,
    Math. Ann. 390 (2024), no. 2, 2459--2495.
  22. A. Grigor'yan, S. Ishiwata and L. Saloff-Coste,
    Poincaré constant on manifolds with ends,
    Proc. Lond. Math. Soc. (3) 126 (2023), no. 6, 1961--2012.
  23. K. Kunikawa and Y. Sakurai,
    Hamilton type entropy formula along the Ricci flow on surfaces with boundary,
    Comm. Anal. Geom. 31 (2023), no. 7, 1655--1668.
  24. R. Ozawa, Y. Sakurai and T. Yamada,
    Maximal diameter theorem for directed graphs of positive Ricci curvature,
    Comm. Anal. Geom. 31 (2023), no. 5, 1275--1298.
  25. R. Ozawa, Y. Sakurai and T. Yamada,
    Heat flow and concentration of measure on directed graphs with a lower Ricci curvature bound,
    Potential Anal. 59 (2023), no. 3, 955--969.
  26. Y. Sakurai,
    Dirichlet problem for harmonic maps from strongly rectifiable spaces into regular balls in CAT(1) spaces,
    Ann. Global Anal. Geom. 64 (2023), no. 3, Paper No. 19, 18 pp.
  27. K. Kunikawa and Y. Sakurai,
    Yau and Souplet-Zhang type gradient estimates on Riemannian manifolds with boundary under Dirichlet boundary condition,
    Proc. Amer. Math. Soc. 150 (2022), no. 4, 1767--1777.
  28. S. Esaki, D. Kazukawa and A. Mitsuishi,
    Invariants for Gromov's pyramids and their applications Summary,
    Adv. Math. 442 (2024), Paper No. 109583, 70 pp.
  29. S. Esaki and H. Tanemura,
    Stochastic differential equations for infinite particle systems of jump type with long range interactions,
    J. Math. Soc. Japan 76 (2024), no. 1, 283--336.